X-Git-Url: https://git.cworth.org/git?a=blobdiff_plain;f=thirdparty%2Fdirectxtex%2FXNAMath%2Fxnamath.h;fp=thirdparty%2Fdirectxtex%2FXNAMath%2Fxnamath.h;h=941af11a2a0ec2e5a91daf2d4bb3144cdd14f015;hb=d7c738e13decf8a8a891008c51b437ccbe3434fb;hp=0000000000000000000000000000000000000000;hpb=4f9982f5ec3dccae65d5a49dfd5a81b9737d90cd;p=apitrace diff --git a/thirdparty/directxtex/XNAMath/xnamath.h b/thirdparty/directxtex/XNAMath/xnamath.h new file mode 100644 index 0000000..941af11 --- /dev/null +++ b/thirdparty/directxtex/XNAMath/xnamath.h @@ -0,0 +1,3397 @@ +/************************************************************************ +* * +* XNAMath.h -- SIMD C++ Math library for Windows and Xbox 360 * +* * +* Copyright (c) Microsoft Corp. All rights reserved. * +* * +************************************************************************/ + +#if defined(_MSC_VER) && (_MSC_VER > 1000) +#pragma once +#endif + +#ifndef __XNAMATH_H__ +#define __XNAMATH_H__ + +#ifdef __XBOXMATH_H__ +#error XNAMATH and XBOXMATH are incompatible in the same compilation module. Use one or the other. +#endif + +#define XNAMATH_VERSION 205 + +#if !defined(_XM_X64_) && !defined(_XM_X86_) +#if defined(_M_AMD64) || defined(_AMD64_) +#define _XM_X64_ +#elif defined(_M_IX86) || defined(_X86_) +#define _XM_X86_ +#endif +#endif + + +#if !defined(_XM_BIGENDIAN_) && !defined(_XM_LITTLEENDIAN_) +#if defined(_XM_X64_) || defined(_XM_X86_) +#define _XM_LITTLEENDIAN_ +#elif defined(_XBOX_VER) +#define _XM_BIGENDIAN_ +#else +#error xnamath.h does not support this target +#endif +#endif + +#if defined(_XM_X86_) || defined(_XM_X64_) +#define _XM_SSE_INTRINSICS_ +#if !defined(__cplusplus) && !defined(_XM_NO_INTRINSICS_) +#error xnamath.h only supports C compliation for Xbox 360 targets and no intrinsics cases for x86/x64 +#endif +#elif defined(_XBOX_VER) +#if !defined(__VMX128_SUPPORTED) && !defined(_XM_NO_INTRINSICS_) +#error xnamath.h requires VMX128 compiler support for XBOX 360 +#endif // !__VMX128_SUPPORTED && !_XM_NO_INTRINSICS_ +#define _XM_VMX128_INTRINSICS_ +#elif !defined(_XM_NO_INTRINSICS_) +#error xnamath.h does not support this target +#endif + + +#if defined(_XM_SSE_INTRINSICS_) +#ifndef _XM_NO_INTRINSICS_ +#include +#include +#endif +#elif defined(_XM_VMX128_INTRINSICS_) +#error This version of xnamath.h does not support Xbox 360 +#endif + +#if defined(_XM_SSE_INTRINSICS_) +#pragma warning(push) +#pragma warning(disable:4985) +#endif +#include +#if defined(_XM_SSE_INTRINSICS_) +#pragma warning(pop) +#endif + + +#include + + +#if !defined(XMINLINE) +#if !defined(XM_NO_MISALIGNED_VECTOR_ACCESS) +#define XMINLINE __inline +#else +#define XMINLINE __forceinline +#endif +#endif + +#if !defined(XMFINLINE) +#define XMFINLINE __forceinline +#endif + +#if !defined(XMDEBUG) +#if defined(_DEBUG) +#define XMDEBUG +#endif +#endif // !XMDEBUG + +#if !defined(XMASSERT) +#if defined(_PREFAST_) +#define XMASSERT(Expression) __analysis_assume((Expression)) +#elif defined(XMDEBUG) // !_PREFAST_ +#define XMASSERT(Expression) ((VOID)((Expression) || (XMAssert(#Expression, __FILE__, __LINE__), 0))) +#else // !XMDEBUG +#define XMASSERT(Expression) ((VOID)0) +#endif // !XMDEBUG +#endif // !XMASSERT + +#if !defined(XM_NO_ALIGNMENT) +#define _DECLSPEC_ALIGN_16_ __declspec(align(16)) +#else +#define _DECLSPEC_ALIGN_16_ +#endif + + +#if defined(_MSC_VER) && (_MSC_VER<1500) && (_MSC_VER>=1400) +#define _XM_ISVS2005_ +#endif + +/**************************************************************************** + * + * Constant definitions + * + ****************************************************************************/ + +#define XM_PI 3.141592654f +#define XM_2PI 6.283185307f +#define XM_1DIVPI 0.318309886f +#define XM_1DIV2PI 0.159154943f +#define XM_PIDIV2 1.570796327f +#define XM_PIDIV4 0.785398163f + +#define XM_SELECT_0 0x00000000 +#define XM_SELECT_1 0xFFFFFFFF + +#define XM_PERMUTE_0X 0x00010203 +#define XM_PERMUTE_0Y 0x04050607 +#define XM_PERMUTE_0Z 0x08090A0B +#define XM_PERMUTE_0W 0x0C0D0E0F +#define XM_PERMUTE_1X 0x10111213 +#define XM_PERMUTE_1Y 0x14151617 +#define XM_PERMUTE_1Z 0x18191A1B +#define XM_PERMUTE_1W 0x1C1D1E1F + +#define XM_CRMASK_CR6 0x000000F0 +#define XM_CRMASK_CR6TRUE 0x00000080 +#define XM_CRMASK_CR6FALSE 0x00000020 +#define XM_CRMASK_CR6BOUNDS XM_CRMASK_CR6FALSE + + +#define XM_CACHE_LINE_SIZE 64 + +/**************************************************************************** + * + * Macros + * + ****************************************************************************/ + +// Unit conversion + +XMFINLINE FLOAT XMConvertToRadians(FLOAT fDegrees) { return fDegrees * (XM_PI / 180.0f); } +XMFINLINE FLOAT XMConvertToDegrees(FLOAT fRadians) { return fRadians * (180.0f / XM_PI); } + +// Condition register evaluation proceeding a recording (Rc) comparison + +#define XMComparisonAllTrue(CR) (((CR) & XM_CRMASK_CR6TRUE) == XM_CRMASK_CR6TRUE) +#define XMComparisonAnyTrue(CR) (((CR) & XM_CRMASK_CR6FALSE) != XM_CRMASK_CR6FALSE) +#define XMComparisonAllFalse(CR) (((CR) & XM_CRMASK_CR6FALSE) == XM_CRMASK_CR6FALSE) +#define XMComparisonAnyFalse(CR) (((CR) & XM_CRMASK_CR6TRUE) != XM_CRMASK_CR6TRUE) +#define XMComparisonMixed(CR) (((CR) & XM_CRMASK_CR6) == 0) +#define XMComparisonAllInBounds(CR) (((CR) & XM_CRMASK_CR6BOUNDS) == XM_CRMASK_CR6BOUNDS) +#define XMComparisonAnyOutOfBounds(CR) (((CR) & XM_CRMASK_CR6BOUNDS) != XM_CRMASK_CR6BOUNDS) + + +#define XMMin(a, b) (((a) < (b)) ? (a) : (b)) +#define XMMax(a, b) (((a) > (b)) ? (a) : (b)) + +/**************************************************************************** + * + * Data types + * + ****************************************************************************/ + +#pragma warning(push) +#pragma warning(disable:4201 4365 4324) + +#ifdef _XM_BIGENDIAN_ +#pragma bitfield_order(push) +#pragma bitfield_order(lsb_to_msb) +#endif + +//------------------------------------------------------------------------------ +#if defined(_XM_NO_INTRINSICS_) && !defined(_XBOX_VER) +// The __vector4 structure is an intrinsic on Xbox but must be separately defined +// for x86/x64 +typedef struct __vector4 +{ + union + { + float vector4_f32[4]; + unsigned int vector4_u32[4]; +#ifndef XM_STRICT_VECTOR4 + struct + { + FLOAT x; + FLOAT y; + FLOAT z; + FLOAT w; + }; + FLOAT v[4]; + UINT u[4]; +#endif // !XM_STRICT_VECTOR4 + }; +} __vector4; +#endif // _XM_NO_INTRINSICS_ + +//------------------------------------------------------------------------------ +#if (defined (_XM_X86_) || defined(_XM_X64_)) && defined(_XM_NO_INTRINSICS_) +typedef UINT __vector4i[4]; +#else +typedef __declspec(align(16)) UINT __vector4i[4]; +#endif + +//------------------------------------------------------------------------------ +// Vector intrinsic: Four 32 bit floating point components aligned on a 16 byte +// boundary and mapped to hardware vector registers +#if defined(_XM_SSE_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) +typedef __m128 XMVECTOR; +#else +typedef __vector4 XMVECTOR; +#endif + +// Fix-up for (1st-3rd) XMVECTOR parameters that are pass-in-register for x86 and Xbox 360, but not for other targets +#if defined(_XM_VMX128_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) +typedef const XMVECTOR FXMVECTOR; +#elif defined(_XM_X86_) && !defined(_XM_NO_INTRINSICS_) +typedef const XMVECTOR FXMVECTOR; +#elif defined(__cplusplus) +typedef const XMVECTOR& FXMVECTOR; +#else +typedef const XMVECTOR FXMVECTOR; +#endif + +// Fix-up for (4th+) XMVECTOR parameters to pass in-register for Xbox 360 and by reference otherwise +#if defined(_XM_VMX128_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) +typedef const XMVECTOR CXMVECTOR; +#elif defined(__cplusplus) +typedef const XMVECTOR& CXMVECTOR; +#else +typedef const XMVECTOR CXMVECTOR; +#endif + +//------------------------------------------------------------------------------ +// Conversion types for constants +typedef _DECLSPEC_ALIGN_16_ struct XMVECTORF32 { + union { + float f[4]; + XMVECTOR v; + }; + +#if defined(__cplusplus) + inline operator XMVECTOR() const { return v; } + inline operator const float*() const { return f; } +#if !defined(_XM_NO_INTRINSICS_) && defined(_XM_SSE_INTRINSICS_) + inline operator __m128i() const { return reinterpret_cast(&v)[0]; } + inline operator __m128d() const { return reinterpret_cast(&v)[0]; } +#endif +#endif // __cplusplus +} XMVECTORF32; + +typedef _DECLSPEC_ALIGN_16_ struct XMVECTORI32 { + union { + INT i[4]; + XMVECTOR v; + }; +#if defined(__cplusplus) + inline operator XMVECTOR() const { return v; } +#if !defined(_XM_NO_INTRINSICS_) && defined(_XM_SSE_INTRINSICS_) + inline operator __m128i() const { return reinterpret_cast(&v)[0]; } + inline operator __m128d() const { return reinterpret_cast(&v)[0]; } +#endif +#endif // __cplusplus +} XMVECTORI32; + +typedef _DECLSPEC_ALIGN_16_ struct XMVECTORU8 { + union { + BYTE u[16]; + XMVECTOR v; + }; +#if defined(__cplusplus) + inline operator XMVECTOR() const { return v; } +#if !defined(_XM_NO_INTRINSICS_) && defined(_XM_SSE_INTRINSICS_) + inline operator __m128i() const { return reinterpret_cast(&v)[0]; } + inline operator __m128d() const { return reinterpret_cast(&v)[0]; } +#endif +#endif // __cplusplus +} XMVECTORU8; + +typedef _DECLSPEC_ALIGN_16_ struct XMVECTORU32 { + union { + UINT u[4]; + XMVECTOR v; + }; +#if defined(__cplusplus) + inline operator XMVECTOR() const { return v; } +#if !defined(_XM_NO_INTRINSICS_) && defined(_XM_SSE_INTRINSICS_) + inline operator __m128i() const { return reinterpret_cast(&v)[0]; } + inline operator __m128d() const { return reinterpret_cast(&v)[0]; } +#endif +#endif // __cplusplus +} XMVECTORU32; + +//------------------------------------------------------------------------------ +// Vector operators +#if defined(__cplusplus) && !defined(XM_NO_OPERATOR_OVERLOADS) + +XMVECTOR operator+ (FXMVECTOR V); +XMVECTOR operator- (FXMVECTOR V); + +XMVECTOR& operator+= (XMVECTOR& V1, FXMVECTOR V2); +XMVECTOR& operator-= (XMVECTOR& V1, FXMVECTOR V2); +XMVECTOR& operator*= (XMVECTOR& V1, FXMVECTOR V2); +XMVECTOR& operator/= (XMVECTOR& V1, FXMVECTOR V2); +XMVECTOR& operator*= (XMVECTOR& V, FLOAT S); +XMVECTOR& operator/= (XMVECTOR& V, FLOAT S); + +XMVECTOR operator+ (FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR operator- (FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR operator* (FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR operator/ (FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR operator* (FXMVECTOR V, FLOAT S); +XMVECTOR operator* (FLOAT S, FXMVECTOR V); +XMVECTOR operator/ (FXMVECTOR V, FLOAT S); + +#endif // __cplusplus && !XM_NO_OPERATOR_OVERLOADS + +//------------------------------------------------------------------------------ +// Matrix type: Sixteen 32 bit floating point components aligned on a +// 16 byte boundary and mapped to four hardware vector registers +#if (defined(_XM_X86_) || defined(_XM_X64_)) && defined(_XM_NO_INTRINSICS_) +typedef struct _XMMATRIX +#else +typedef _DECLSPEC_ALIGN_16_ struct _XMMATRIX +#endif +{ +#if defined(_XM_NO_INTRINSICS_) || !defined(XM_STRICT_MATRIX) + union + { + XMVECTOR r[4]; + struct + { + FLOAT _11, _12, _13, _14; + FLOAT _21, _22, _23, _24; + FLOAT _31, _32, _33, _34; + FLOAT _41, _42, _43, _44; + }; + FLOAT m[4][4]; + }; +#else + XMVECTOR r[4]; +#endif + +#ifdef __cplusplus + + _XMMATRIX() {}; + _XMMATRIX(FXMVECTOR R0, FXMVECTOR R1, FXMVECTOR R2, CXMVECTOR R3); + _XMMATRIX(FLOAT m00, FLOAT m01, FLOAT m02, FLOAT m03, + FLOAT m10, FLOAT m11, FLOAT m12, FLOAT m13, + FLOAT m20, FLOAT m21, FLOAT m22, FLOAT m23, + FLOAT m30, FLOAT m31, FLOAT m32, FLOAT m33); + explicit _XMMATRIX(_In_count_c_(16) CONST FLOAT *pArray); + +#if defined(_XM_NO_INTRINSICS_) || !defined(XM_STRICT_MATRIX) + FLOAT operator() (UINT Row, UINT Column) CONST { return m[Row][Column]; } + FLOAT& operator() (UINT Row, UINT Column) { return m[Row][Column]; } +#endif + + _XMMATRIX& operator= (CONST _XMMATRIX& M); + +#ifndef XM_NO_OPERATOR_OVERLOADS + _XMMATRIX& operator*= (CONST _XMMATRIX& M); + _XMMATRIX operator* (CONST _XMMATRIX& M) CONST; +#endif // !XM_NO_OPERATOR_OVERLOADS + +#endif // __cplusplus + +} XMMATRIX; + +// Fix-up for XMMATRIX parameters to pass in-register on Xbox 360, by reference otherwise +#if defined(_XM_VMX128_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) +typedef const XMMATRIX CXMMATRIX; +#elif defined(__cplusplus) +typedef const XMMATRIX& CXMMATRIX; +#else +typedef const XMMATRIX CXMMATRIX; +#endif + +//------------------------------------------------------------------------------ +// 16 bit floating point number consisting of a sign bit, a 5 bit biased +// exponent, and a 10 bit mantissa +typedef USHORT HALF; + +//------------------------------------------------------------------------------ +// 2D Vector; 32 bit floating point components +typedef struct _XMFLOAT2 +{ + FLOAT x; + FLOAT y; + +#ifdef __cplusplus + + _XMFLOAT2() {}; + _XMFLOAT2(FLOAT _x, FLOAT _y) : x(_x), y(_y) {}; + _XMFLOAT2(_In_count_c_(2) CONST FLOAT *pArray); + + _XMFLOAT2& operator= (CONST _XMFLOAT2& Float2); + +#endif // __cplusplus + +} XMFLOAT2; + +// 2D Vector; 32 bit floating point components aligned on a 16 byte boundary +#ifdef __cplusplus +__declspec(align(16)) struct XMFLOAT2A : public XMFLOAT2 +{ + XMFLOAT2A() : XMFLOAT2() {}; + XMFLOAT2A(FLOAT _x, FLOAT _y) : XMFLOAT2(_x, _y) {}; + XMFLOAT2A(_In_count_c_(2) CONST FLOAT *pArray) : XMFLOAT2(pArray) {}; + + XMFLOAT2A& operator= (CONST XMFLOAT2A& Float2); +}; +#else +typedef __declspec(align(16)) XMFLOAT2 XMFLOAT2A; +#endif // __cplusplus + +//------------------------------------------------------------------------------ +// 2D Vector; 32 bit signed integer components +typedef struct _XMINT2 +{ + INT x; + INT y; + +#ifdef __cplusplus + + _XMINT2() {}; + _XMINT2(INT _x, INT _y) : x(_x), y(_y) {}; + explicit _XMINT2(_In_count_c_(2) CONST INT *pArray); + + _XMINT2& operator= (CONST _XMINT2& Int2); + +#endif // __cplusplus + +} XMINT2; + +// 2D Vector; 32 bit unsigned integer components +typedef struct _XMUINT2 +{ + UINT x; + UINT y; + +#ifdef __cplusplus + + _XMUINT2() {}; + _XMUINT2(UINT _x, UINT _y) : x(_x), y(_y) {}; + explicit _XMUINT2(_In_count_c_(2) CONST UINT *pArray); + + _XMUINT2& operator= (CONST _XMUINT2& UInt2); + +#endif // __cplusplus + +} XMUINT2; + +//------------------------------------------------------------------------------ +// 2D Vector; 16 bit floating point components +typedef struct _XMHALF2 +{ + HALF x; + HALF y; + +#ifdef __cplusplus + + _XMHALF2() {}; + _XMHALF2(HALF _x, HALF _y) : x(_x), y(_y) {}; + explicit _XMHALF2(_In_count_c_(2) CONST HALF *pArray); + _XMHALF2(FLOAT _x, FLOAT _y); + explicit _XMHALF2(_In_count_c_(2) CONST FLOAT *pArray); + + _XMHALF2& operator= (CONST _XMHALF2& Half2); + +#endif // __cplusplus + +} XMHALF2; + +//------------------------------------------------------------------------------ +// 2D Vector; 16 bit signed normalized integer components +typedef struct _XMSHORTN2 +{ + SHORT x; + SHORT y; + +#ifdef __cplusplus + + _XMSHORTN2() {}; + _XMSHORTN2(SHORT _x, SHORT _y) : x(_x), y(_y) {}; + explicit _XMSHORTN2(_In_count_c_(2) CONST SHORT *pArray); + _XMSHORTN2(FLOAT _x, FLOAT _y); + explicit _XMSHORTN2(_In_count_c_(2) CONST FLOAT *pArray); + + _XMSHORTN2& operator= (CONST _XMSHORTN2& ShortN2); + +#endif // __cplusplus + +} XMSHORTN2; + +// 2D Vector; 16 bit signed integer components +typedef struct _XMSHORT2 +{ + SHORT x; + SHORT y; + +#ifdef __cplusplus + + _XMSHORT2() {}; + _XMSHORT2(SHORT _x, SHORT _y) : x(_x), y(_y) {}; + explicit _XMSHORT2(_In_count_c_(2) CONST SHORT *pArray); + _XMSHORT2(FLOAT _x, FLOAT _y); + explicit _XMSHORT2(_In_count_c_(2) CONST FLOAT *pArray); + + _XMSHORT2& operator= (CONST _XMSHORT2& Short2); + +#endif // __cplusplus + +} XMSHORT2; + +// 2D Vector; 16 bit unsigned normalized integer components +typedef struct _XMUSHORTN2 +{ + USHORT x; + USHORT y; + +#ifdef __cplusplus + + _XMUSHORTN2() {}; + _XMUSHORTN2(USHORT _x, USHORT _y) : x(_x), y(_y) {}; + explicit _XMUSHORTN2(_In_count_c_(2) CONST USHORT *pArray); + _XMUSHORTN2(FLOAT _x, FLOAT _y); + explicit _XMUSHORTN2(_In_count_c_(2) CONST FLOAT *pArray); + + _XMUSHORTN2& operator= (CONST _XMUSHORTN2& UShortN2); + +#endif // __cplusplus + +} XMUSHORTN2; + +// 2D Vector; 16 bit unsigned integer components +typedef struct _XMUSHORT2 +{ + USHORT x; + USHORT y; + +#ifdef __cplusplus + + _XMUSHORT2() {}; + _XMUSHORT2(USHORT _x, USHORT _y) : x(_x), y(_y) {}; + explicit _XMUSHORT2(_In_count_c_(2) CONST USHORT *pArray); + _XMUSHORT2(FLOAT _x, FLOAT _y); + explicit _XMUSHORT2(_In_count_c_(2) CONST FLOAT *pArray); + + _XMUSHORT2& operator= (CONST _XMUSHORT2& UShort2); + +#endif // __cplusplus + +} XMUSHORT2; + +//------------------------------------------------------------------------------ +// 2D Vector; 8 bit signed normalized integer components +typedef struct _XMBYTEN2 +{ + CHAR x; + CHAR y; + +#ifdef __cplusplus + + _XMBYTEN2() {}; + _XMBYTEN2(CHAR _x, CHAR _y) : x(_x), y(_y) {}; + explicit _XMBYTEN2(_In_count_c_(2) CONST CHAR *pArray); + _XMBYTEN2(FLOAT _x, FLOAT _y); + explicit _XMBYTEN2(_In_count_c_(2) CONST FLOAT *pArray); + + _XMBYTEN2& operator= (CONST _XMBYTEN2& ByteN2); + +#endif // __cplusplus + +} XMBYTEN2; + +// 2D Vector; 8 bit signed integer components +typedef struct _XMBYTE2 +{ + CHAR x; + CHAR y; + +#ifdef __cplusplus + + _XMBYTE2() {}; + _XMBYTE2(CHAR _x, CHAR _y) : x(_x), y(_y) {}; + explicit _XMBYTE2(_In_count_c_(2) CONST CHAR *pArray); + _XMBYTE2(FLOAT _x, FLOAT _y); + explicit _XMBYTE2(_In_count_c_(2) CONST FLOAT *pArray); + + _XMBYTE2& operator= (CONST _XMBYTE2& Byte2); + +#endif // __cplusplus + +} XMBYTE2; + +// 2D Vector; 8 bit unsigned normalized integer components +typedef struct _XMUBYTEN2 +{ + BYTE x; + BYTE y; + +#ifdef __cplusplus + + _XMUBYTEN2() {}; + _XMUBYTEN2(BYTE _x, BYTE _y) : x(_x), y(_y) {}; + explicit _XMUBYTEN2(_In_count_c_(2) CONST BYTE *pArray); + _XMUBYTEN2(FLOAT _x, FLOAT _y); + explicit _XMUBYTEN2(_In_count_c_(2) CONST FLOAT *pArray); + + _XMUBYTEN2& operator= (CONST _XMUBYTEN2& UByteN2); + +#endif // __cplusplus + +} XMUBYTEN2; + + +// 2D Vector; 8 bit unsigned integer components +typedef struct _XMUBYTE2 +{ + BYTE x; + BYTE y; + +#ifdef __cplusplus + + _XMUBYTE2() {}; + _XMUBYTE2(BYTE _x, BYTE _y) : x(_x), y(_y) {}; + explicit _XMUBYTE2(_In_count_c_(2) CONST BYTE *pArray); + _XMUBYTE2(FLOAT _x, FLOAT _y); + explicit _XMUBYTE2(_In_count_c_(2) CONST FLOAT *pArray); + + _XMUBYTE2& operator= (CONST _XMUBYTE2& UByte2); + +#endif // __cplusplus + +} XMUBYTE2; + +//------------------------------------------------------------------------------ +// 3D Vector; 32 bit floating point components +typedef struct _XMFLOAT3 +{ + FLOAT x; + FLOAT y; + FLOAT z; + +#ifdef __cplusplus + + _XMFLOAT3() {}; + _XMFLOAT3(FLOAT _x, FLOAT _y, FLOAT _z) : x(_x), y(_y), z(_z) {}; + _XMFLOAT3(_In_count_c_(3) CONST FLOAT *pArray); + + _XMFLOAT3& operator= (CONST _XMFLOAT3& Float3); + +#endif // __cplusplus + +} XMFLOAT3; + +// 3D Vector; 32 bit floating point components aligned on a 16 byte boundary +#ifdef __cplusplus +__declspec(align(16)) struct XMFLOAT3A : public XMFLOAT3 +{ + XMFLOAT3A() : XMFLOAT3() {}; + XMFLOAT3A(FLOAT _x, FLOAT _y, FLOAT _z) : XMFLOAT3(_x, _y, _z) {}; + XMFLOAT3A(_In_count_c_(3) CONST FLOAT *pArray) : XMFLOAT3(pArray) {}; + + XMFLOAT3A& operator= (CONST XMFLOAT3A& Float3); +}; +#else +typedef __declspec(align(16)) XMFLOAT3 XMFLOAT3A; +#endif // __cplusplus + +//------------------------------------------------------------------------------ +// 3D Vector; 32 bit signed integer components +typedef struct _XMINT3 +{ + INT x; + INT y; + INT z; + +#ifdef __cplusplus + + _XMINT3() {}; + _XMINT3(INT _x, INT _y, INT _z) : x(_x), y(_y), z(_z) {}; + explicit _XMINT3(_In_count_c_(3) CONST INT *pArray); + + _XMINT3& operator= (CONST _XMINT3& Int3); + +#endif // __cplusplus + +} XMINT3; + +// 3D Vector; 32 bit unsigned integer components +typedef struct _XMUINT3 +{ + UINT x; + UINT y; + UINT z; + +#ifdef __cplusplus + + _XMUINT3() {}; + _XMUINT3(UINT _x, UINT _y, UINT _z) : x(_x), y(_y), z(_z) {}; + explicit _XMUINT3(_In_count_c_(3) CONST UINT *pArray); + + _XMUINT3& operator= (CONST _XMUINT3& UInt3); + +#endif // __cplusplus + +} XMUINT3; + +//------------------------------------------------------------------------------ +// 3D Vector; 11-11-10 bit normalized components packed into a 32 bit integer +// The normalized 3D Vector is packed into 32 bits as follows: a 10 bit signed, +// normalized integer for the z component and 11 bit signed, normalized +// integers for the x and y components. The z component is stored in the +// most significant bits and the x component in the least significant bits +// (Z10Y11X11): [32] zzzzzzzz zzyyyyyy yyyyyxxx xxxxxxxx [0] +typedef struct _XMHENDN3 +{ + union + { + struct + { + INT x : 11; // -1023/1023 to 1023/1023 + INT y : 11; // -1023/1023 to 1023/1023 + INT z : 10; // -511/511 to 511/511 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMHENDN3() {}; + explicit _XMHENDN3(UINT Packed) : v(Packed) {}; + _XMHENDN3(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMHENDN3(_In_count_c_(3) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMHENDN3& operator= (CONST _XMHENDN3& HenDN3); + _XMHENDN3& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMHENDN3; + +// 3D Vector; 11-11-10 bit components packed into a 32 bit integer +// The 3D Vector is packed into 32 bits as follows: a 10 bit signed, +// integer for the z component and 11 bit signed integers for the +// x and y components. The z component is stored in the +// most significant bits and the x component in the least significant bits +// (Z10Y11X11): [32] zzzzzzzz zzyyyyyy yyyyyxxx xxxxxxxx [0] +typedef struct _XMHEND3 +{ + union + { + struct + { + INT x : 11; // -1023 to 1023 + INT y : 11; // -1023 to 1023 + INT z : 10; // -511 to 511 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMHEND3() {}; + explicit _XMHEND3(UINT Packed) : v(Packed) {}; + _XMHEND3(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMHEND3(_In_count_c_(3) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMHEND3& operator= (CONST _XMHEND3& HenD3); + _XMHEND3& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMHEND3; + +// 3D Vector; 11-11-10 bit normalized components packed into a 32 bit integer +// The normalized 3D Vector is packed into 32 bits as follows: a 10 bit unsigned, +// normalized integer for the z component and 11 bit unsigned, normalized +// integers for the x and y components. The z component is stored in the +// most significant bits and the x component in the least significant bits +// (Z10Y11X11): [32] zzzzzzzz zzyyyyyy yyyyyxxx xxxxxxxx [0] +typedef struct _XMUHENDN3 +{ + union + { + struct + { + UINT x : 11; // 0/2047 to 2047/2047 + UINT y : 11; // 0/2047 to 2047/2047 + UINT z : 10; // 0/1023 to 1023/1023 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMUHENDN3() {}; + explicit _XMUHENDN3(UINT Packed) : v(Packed) {}; + _XMUHENDN3(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMUHENDN3(_In_count_c_(3) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMUHENDN3& operator= (CONST _XMUHENDN3& UHenDN3); + _XMUHENDN3& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMUHENDN3; + +// 3D Vector; 11-11-10 bit components packed into a 32 bit integer +// The 3D Vector is packed into 32 bits as follows: a 10 bit unsigned +// integer for the z component and 11 bit unsigned integers +// for the x and y components. The z component is stored in the +// most significant bits and the x component in the least significant bits +// (Z10Y11X11): [32] zzzzzzzz zzyyyyyy yyyyyxxx xxxxxxxx [0] +typedef struct _XMUHEND3 +{ + union + { + struct + { + UINT x : 11; // 0 to 2047 + UINT y : 11; // 0 to 2047 + UINT z : 10; // 0 to 1023 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMUHEND3() {}; + explicit _XMUHEND3(UINT Packed) : v(Packed) {}; + _XMUHEND3(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMUHEND3(_In_count_c_(3) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMUHEND3& operator= (CONST _XMUHEND3& UHenD3); + _XMUHEND3& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMUHEND3; + +// 3D Vector; 10-11-11 bit normalized components packed into a 32 bit integer +// The normalized 3D Vector is packed into 32 bits as follows: a 10 bit signed, +// normalized integer for the x component and 11 bit signed, normalized +// integers for the y and z components. The z component is stored in the +// most significant bits and the x component in the least significant bits +// (Z11Y11X10): [32] zzzzzzzz zzzyyyyy yyyyyyxx xxxxxxxx [0] +typedef struct _XMDHENN3 +{ + union + { + struct + { + INT x : 10; // -511/511 to 511/511 + INT y : 11; // -1023/1023 to 1023/1023 + INT z : 11; // -1023/1023 to 1023/1023 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMDHENN3() {}; + explicit _XMDHENN3(UINT Packed) : v(Packed) {}; + _XMDHENN3(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMDHENN3(_In_count_c_(3) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMDHENN3& operator= (CONST _XMDHENN3& DHenN3); + _XMDHENN3& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMDHENN3; + +// 3D Vector; 10-11-11 bit components packed into a 32 bit integer +// The 3D Vector is packed into 32 bits as follows: a 10 bit signed, +// integer for the x component and 11 bit signed integers for the +// y and z components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (Z11Y11X10): [32] zzzzzzzz zzzyyyyy yyyyyyxx xxxxxxxx [0] +typedef struct _XMDHEN3 +{ + union + { + struct + { + INT x : 10; // -511 to 511 + INT y : 11; // -1023 to 1023 + INT z : 11; // -1023 to 1023 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMDHEN3() {}; + explicit _XMDHEN3(UINT Packed) : v(Packed) {}; + _XMDHEN3(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMDHEN3(_In_count_c_(3) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMDHEN3& operator= (CONST _XMDHEN3& DHen3); + _XMDHEN3& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMDHEN3; + +// 3D Vector; 10-11-11 bit normalized components packed into a 32 bit integer +// The normalized 3D Vector is packed into 32 bits as follows: a 10 bit unsigned, +// normalized integer for the x component and 11 bit unsigned, normalized +// integers for the y and z components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (Z11Y11X10): [32] zzzzzzzz zzzyyyyy yyyyyyxx xxxxxxxx [0] +typedef struct _XMUDHENN3 +{ + union + { + struct + { + UINT x : 10; // 0/1023 to 1023/1023 + UINT y : 11; // 0/2047 to 2047/2047 + UINT z : 11; // 0/2047 to 2047/2047 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMUDHENN3() {}; + explicit _XMUDHENN3(UINT Packed) : v(Packed) {}; + _XMUDHENN3(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMUDHENN3(_In_count_c_(3) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMUDHENN3& operator= (CONST _XMUDHENN3& UDHenN3); + _XMUDHENN3& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMUDHENN3; + +// 3D Vector; 10-11-11 bit components packed into a 32 bit integer +// The 3D Vector is packed into 32 bits as follows: a 10 bit unsigned, +// integer for the x component and 11 bit unsigned integers +// for the y and z components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (Z11Y11X10): [32] zzzzzzzz zzzyyyyy yyyyyyxx xxxxxxxx [0] +typedef struct _XMUDHEN3 +{ + union + { + struct + { + UINT x : 10; // 0 to 1023 + UINT y : 11; // 0 to 2047 + UINT z : 11; // 0 to 2047 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMUDHEN3() {}; + explicit _XMUDHEN3(UINT Packed) : v(Packed) {}; + _XMUDHEN3(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMUDHEN3(_In_count_c_(3) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMUDHEN3& operator= (CONST _XMUDHEN3& UDHen3); + _XMUDHEN3& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMUDHEN3; + +//------------------------------------------------------------------------------ +// 3D vector: 5/6/5 unsigned integer components +typedef struct _XMU565 +{ + union + { + struct + { + USHORT x : 5; + USHORT y : 6; + USHORT z : 5; + }; + USHORT v; + }; + +#ifdef __cplusplus + + _XMU565() {}; + explicit _XMU565(USHORT Packed) : v(Packed) {}; + _XMU565(CHAR _x, CHAR _y, CHAR _z) : x(_x), y(_y), z(_z) {}; + explicit _XMU565(_In_count_c_(3) CONST CHAR *pArray); + _XMU565(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMU565(_In_count_c_(3) CONST FLOAT *pArray); + + operator USHORT () const { return v; } + + _XMU565& operator= (CONST _XMU565& U565); + _XMU565& operator= (CONST USHORT Packed); + +#endif // __cplusplus + +} XMU565; + +//------------------------------------------------------------------------------ +// 3D vector: 11/11/10 floating-point components +// The 3D vector is packed into 32 bits as follows: a 5-bit biased exponent +// and 6-bit mantissa for x component, a 5-bit biased exponent and +// 6-bit mantissa for y component, a 5-bit biased exponent and a 5-bit +// mantissa for z. The z component is stored in the most significant bits +// and the x component in the least significant bits. No sign bits so +// all partial-precision numbers are positive. +// (Z10Y11X11): [32] ZZZZZzzz zzzYYYYY yyyyyyXX XXXxxxxx [0] +typedef struct _XMFLOAT3PK +{ + union + { + struct + { + UINT xm : 6; + UINT xe : 5; + UINT ym : 6; + UINT ye : 5; + UINT zm : 5; + UINT ze : 5; + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMFLOAT3PK() {}; + explicit _XMFLOAT3PK(UINT Packed) : v(Packed) {}; + _XMFLOAT3PK(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMFLOAT3PK(_In_count_c_(3) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMFLOAT3PK& operator= (CONST _XMFLOAT3PK& float3pk); + _XMFLOAT3PK& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMFLOAT3PK; + +//------------------------------------------------------------------------------ +// 3D vector: 9/9/9 floating-point components with shared 5-bit exponent +// The 3D vector is packed into 32 bits as follows: a 5-bit biased exponent +// with 9-bit mantissa for the x, y, and z component. The shared exponent +// is stored in the most significant bits and the x component mantissa is in +// the least significant bits. No sign bits so all partial-precision numbers +// are positive. +// (E5Z9Y9X9): [32] EEEEEzzz zzzzzzyy yyyyyyyx xxxxxxxx [0] +typedef struct _XMFLOAT3SE +{ + union + { + struct + { + UINT xm : 9; + UINT ym : 9; + UINT zm : 9; + UINT e : 5; + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMFLOAT3SE() {}; + explicit _XMFLOAT3SE(UINT Packed) : v(Packed) {}; + _XMFLOAT3SE(FLOAT _x, FLOAT _y, FLOAT _z); + explicit _XMFLOAT3SE(_In_count_c_(3) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMFLOAT3SE& operator= (CONST _XMFLOAT3SE& float3se); + _XMFLOAT3SE& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMFLOAT3SE; + +//------------------------------------------------------------------------------ +// 4D Vector; 32 bit floating point components +typedef struct _XMFLOAT4 +{ + FLOAT x; + FLOAT y; + FLOAT z; + FLOAT w; + +#ifdef __cplusplus + + _XMFLOAT4() {}; + _XMFLOAT4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w) : x(_x), y(_y), z(_z), w(_w) {}; + _XMFLOAT4(_In_count_c_(4) CONST FLOAT *pArray); + + _XMFLOAT4& operator= (CONST _XMFLOAT4& Float4); + +#endif // __cplusplus + +} XMFLOAT4; + +// 4D Vector; 32 bit floating point components aligned on a 16 byte boundary +#ifdef __cplusplus +__declspec(align(16)) struct XMFLOAT4A : public XMFLOAT4 +{ + XMFLOAT4A() : XMFLOAT4() {}; + XMFLOAT4A(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w) : XMFLOAT4(_x, _y, _z, _w) {}; + XMFLOAT4A(_In_count_c_(4) CONST FLOAT *pArray) : XMFLOAT4(pArray) {}; + + XMFLOAT4A& operator= (CONST XMFLOAT4A& Float4); +}; +#else +typedef __declspec(align(16)) XMFLOAT4 XMFLOAT4A; +#endif // __cplusplus + +//------------------------------------------------------------------------------ +// 4D Vector; 32 bit signed integer components +typedef struct _XMINT4 +{ + INT x; + INT y; + INT z; + INT w; + +#ifdef __cplusplus + + _XMINT4() {}; + _XMINT4(INT _x, INT _y, INT _z, INT _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMINT4(_In_count_c_(4) CONST INT *pArray); + + _XMINT4& operator= (CONST _XMINT4& Int4); + +#endif // __cplusplus + +} XMINT4; + +// 4D Vector; 32 bit unsigned integer components +typedef struct _XMUINT4 +{ + UINT x; + UINT y; + UINT z; + UINT w; + +#ifdef __cplusplus + + _XMUINT4() {}; + _XMUINT4(UINT _x, UINT _y, UINT _z, UINT _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMUINT4(_In_count_c_(4) CONST UINT *pArray); + + _XMUINT4& operator= (CONST _XMUINT4& UInt4); + +#endif // __cplusplus + +} XMUINT4; + +//------------------------------------------------------------------------------ +// 4D Vector; 16 bit floating point components +typedef struct _XMHALF4 +{ + HALF x; + HALF y; + HALF z; + HALF w; + +#ifdef __cplusplus + + _XMHALF4() {}; + _XMHALF4(HALF _x, HALF _y, HALF _z, HALF _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMHALF4(_In_count_c_(4) CONST HALF *pArray); + _XMHALF4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMHALF4(_In_count_c_(4) CONST FLOAT *pArray); + + _XMHALF4& operator= (CONST _XMHALF4& Half4); + +#endif // __cplusplus + +} XMHALF4; + +//------------------------------------------------------------------------------ +// 4D Vector; 16 bit signed normalized integer components +typedef struct _XMSHORTN4 +{ + SHORT x; + SHORT y; + SHORT z; + SHORT w; + +#ifdef __cplusplus + + _XMSHORTN4() {}; + _XMSHORTN4(SHORT _x, SHORT _y, SHORT _z, SHORT _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMSHORTN4(_In_count_c_(4) CONST SHORT *pArray); + _XMSHORTN4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMSHORTN4(_In_count_c_(4) CONST FLOAT *pArray); + + _XMSHORTN4& operator= (CONST _XMSHORTN4& ShortN4); + +#endif // __cplusplus + +} XMSHORTN4; + +// 4D Vector; 16 bit signed integer components +typedef struct _XMSHORT4 +{ + SHORT x; + SHORT y; + SHORT z; + SHORT w; + +#ifdef __cplusplus + + _XMSHORT4() {}; + _XMSHORT4(SHORT _x, SHORT _y, SHORT _z, SHORT _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMSHORT4(_In_count_c_(4) CONST SHORT *pArray); + _XMSHORT4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMSHORT4(_In_count_c_(4) CONST FLOAT *pArray); + + _XMSHORT4& operator= (CONST _XMSHORT4& Short4); + +#endif // __cplusplus + +} XMSHORT4; + +// 4D Vector; 16 bit unsigned normalized integer components +typedef struct _XMUSHORTN4 +{ + USHORT x; + USHORT y; + USHORT z; + USHORT w; + +#ifdef __cplusplus + + _XMUSHORTN4() {}; + _XMUSHORTN4(USHORT _x, USHORT _y, USHORT _z, USHORT _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMUSHORTN4(_In_count_c_(4) CONST USHORT *pArray); + _XMUSHORTN4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMUSHORTN4(_In_count_c_(4) CONST FLOAT *pArray); + + _XMUSHORTN4& operator= (CONST _XMUSHORTN4& UShortN4); + +#endif // __cplusplus + +} XMUSHORTN4; + +// 4D Vector; 16 bit unsigned integer components +typedef struct _XMUSHORT4 +{ + USHORT x; + USHORT y; + USHORT z; + USHORT w; + +#ifdef __cplusplus + + _XMUSHORT4() {}; + _XMUSHORT4(USHORT _x, USHORT _y, USHORT _z, USHORT _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMUSHORT4(_In_count_c_(4) CONST USHORT *pArray); + _XMUSHORT4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMUSHORT4(_In_count_c_(4) CONST FLOAT *pArray); + + _XMUSHORT4& operator= (CONST _XMUSHORT4& UShort4); + +#endif // __cplusplus + +} XMUSHORT4; + +//------------------------------------------------------------------------------ +// 4D Vector; 10-10-10-2 bit normalized components packed into a 32 bit integer +// The normalized 4D Vector is packed into 32 bits as follows: a 2 bit unsigned, +// normalized integer for the w component and 10 bit signed, normalized +// integers for the z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W2Z10Y10X10): [32] wwzzzzzz zzzzyyyy yyyyyyxx xxxxxxxx [0] +typedef struct _XMXDECN4 +{ + union + { + struct + { + INT x : 10; // -511/511 to 511/511 + INT y : 10; // -511/511 to 511/511 + INT z : 10; // -511/511 to 511/511 + UINT w : 2; // 0/3 to 3/3 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMXDECN4() {}; + explicit _XMXDECN4(UINT Packed) : v(Packed) {}; + _XMXDECN4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMXDECN4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMXDECN4& operator= (CONST _XMXDECN4& XDecN4); + _XMXDECN4& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMXDECN4; + +// 4D Vector; 10-10-10-2 bit components packed into a 32 bit integer +// The normalized 4D Vector is packed into 32 bits as follows: a 2 bit unsigned +// integer for the w component and 10 bit signed integers for the +// z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W2Z10Y10X10): [32] wwzzzzzz zzzzyyyy yyyyyyxx xxxxxxxx [0] +typedef struct _XMXDEC4 +{ + union + { + struct + { + INT x : 10; // -511 to 511 + INT y : 10; // -511 to 511 + INT z : 10; // -511 to 511 + UINT w : 2; // 0 to 3 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMXDEC4() {}; + explicit _XMXDEC4(UINT Packed) : v(Packed) {}; + _XMXDEC4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMXDEC4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMXDEC4& operator= (CONST _XMXDEC4& XDec4); + _XMXDEC4& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMXDEC4; + +// 4D Vector; 10-10-10-2 bit normalized components packed into a 32 bit integer +// The normalized 4D Vector is packed into 32 bits as follows: a 2 bit signed, +// normalized integer for the w component and 10 bit signed, normalized +// integers for the z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W2Z10Y10X10): [32] wwzzzzzz zzzzyyyy yyyyyyxx xxxxxxxx [0] +typedef struct _XMDECN4 +{ + union + { + struct + { + INT x : 10; // -511/511 to 511/511 + INT y : 10; // -511/511 to 511/511 + INT z : 10; // -511/511 to 511/511 + INT w : 2; // -1/1 to 1/1 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMDECN4() {}; + explicit _XMDECN4(UINT Packed) : v(Packed) {}; + _XMDECN4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMDECN4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMDECN4& operator= (CONST _XMDECN4& DecN4); + _XMDECN4& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMDECN4; + +// 4D Vector; 10-10-10-2 bit components packed into a 32 bit integer +// The 4D Vector is packed into 32 bits as follows: a 2 bit signed, +// integer for the w component and 10 bit signed integers for the +// z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W2Z10Y10X10): [32] wwzzzzzz zzzzyyyy yyyyyyxx xxxxxxxx [0] +typedef struct _XMDEC4 +{ + union + { + struct + { + INT x : 10; // -511 to 511 + INT y : 10; // -511 to 511 + INT z : 10; // -511 to 511 + INT w : 2; // -1 to 1 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMDEC4() {}; + explicit _XMDEC4(UINT Packed) : v(Packed) {}; + _XMDEC4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMDEC4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMDEC4& operator= (CONST _XMDEC4& Dec4); + _XMDEC4& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMDEC4; + +// 4D Vector; 10-10-10-2 bit normalized components packed into a 32 bit integer +// The normalized 4D Vector is packed into 32 bits as follows: a 2 bit unsigned, +// normalized integer for the w component and 10 bit unsigned, normalized +// integers for the z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W2Z10Y10X10): [32] wwzzzzzz zzzzyyyy yyyyyyxx xxxxxxxx [0] +typedef struct _XMUDECN4 +{ + union + { + struct + { + UINT x : 10; // 0/1023 to 1023/1023 + UINT y : 10; // 0/1023 to 1023/1023 + UINT z : 10; // 0/1023 to 1023/1023 + UINT w : 2; // 0/3 to 3/3 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMUDECN4() {}; + explicit _XMUDECN4(UINT Packed) : v(Packed) {}; + _XMUDECN4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMUDECN4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMUDECN4& operator= (CONST _XMUDECN4& UDecN4); + _XMUDECN4& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMUDECN4; + +// 4D Vector; 10-10-10-2 bit components packed into a 32 bit integer +// The 4D Vector is packed into 32 bits as follows: a 2 bit unsigned, +// integer for the w component and 10 bit unsigned integers +// for the z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W2Z10Y10X10): [32] wwzzzzzz zzzzyyyy yyyyyyxx xxxxxxxx [0] +typedef struct _XMUDEC4 +{ + union + { + struct + { + UINT x : 10; // 0 to 1023 + UINT y : 10; // 0 to 1023 + UINT z : 10; // 0 to 1023 + UINT w : 2; // 0 to 3 + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMUDEC4() {}; + explicit _XMUDEC4(UINT Packed) : v(Packed) {}; + _XMUDEC4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMUDEC4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT () const { return v; } + + _XMUDEC4& operator= (CONST _XMUDEC4& UDec4); + _XMUDEC4& operator= (CONST UINT Packed); + +#endif // __cplusplus + +} XMUDEC4; + +//------------------------------------------------------------------------------ +// 4D Vector; 20-20-20-4 bit normalized components packed into a 64 bit integer +// The normalized 4D Vector is packed into 64 bits as follows: a 4 bit unsigned, +// normalized integer for the w component and 20 bit signed, normalized +// integers for the z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W4Z20Y20X20): [64] wwwwzzzz zzzzzzzz zzzzzzzz yyyyyyyy yyyyyyyy yyyyxxxx xxxxxxxx xxxxxxxx [0] +typedef struct _XMXICON4 +{ + union + { + struct + { + INT64 x : 20; // -524287/524287 to 524287/524287 + INT64 y : 20; // -524287/524287 to 524287/524287 + INT64 z : 20; // -524287/524287 to 524287/524287 + UINT64 w : 4; // 0/15 to 15/15 + }; + UINT64 v; + }; + +#ifdef __cplusplus + + _XMXICON4() {}; + explicit _XMXICON4(UINT64 Packed) : v(Packed) {}; + _XMXICON4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMXICON4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT64 () const { return v; } + + _XMXICON4& operator= (CONST _XMXICON4& XIcoN4); + _XMXICON4& operator= (CONST UINT64 Packed); + +#endif // __cplusplus + +} XMXICON4; + +// 4D Vector; 20-20-20-4 bit components packed into a 64 bit integer +// The 4D Vector is packed into 64 bits as follows: a 4 bit unsigned +// integer for the w component and 20 bit signed integers for the +// z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W4Z20Y20X20): [64] wwwwzzzz zzzzzzzz zzzzzzzz yyyyyyyy yyyyyyyy yyyyxxxx xxxxxxxx xxxxxxxx [0] +typedef struct _XMXICO4 +{ + union + { + struct + { + INT64 x : 20; // -524287 to 524287 + INT64 y : 20; // -524287 to 524287 + INT64 z : 20; // -524287 to 524287 + UINT64 w : 4; // 0 to 15 + }; + UINT64 v; + }; + +#ifdef __cplusplus + + _XMXICO4() {}; + explicit _XMXICO4(UINT64 Packed) : v(Packed) {}; + _XMXICO4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMXICO4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT64 () const { return v; } + + _XMXICO4& operator= (CONST _XMXICO4& XIco4); + _XMXICO4& operator= (CONST UINT64 Packed); + +#endif // __cplusplus + +} XMXICO4; + +// 4D Vector; 20-20-20-4 bit normalized components packed into a 64 bit integer +// The normalized 4D Vector is packed into 64 bits as follows: a 4 bit signed, +// normalized integer for the w component and 20 bit signed, normalized +// integers for the z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W4Z20Y20X20): [64] wwwwzzzz zzzzzzzz zzzzzzzz yyyyyyyy yyyyyyyy yyyyxxxx xxxxxxxx xxxxxxxx [0] +typedef struct _XMICON4 +{ + union + { + struct + { + INT64 x : 20; // -524287/524287 to 524287/524287 + INT64 y : 20; // -524287/524287 to 524287/524287 + INT64 z : 20; // -524287/524287 to 524287/524287 + INT64 w : 4; // -7/7 to 7/7 + }; + UINT64 v; + }; + +#ifdef __cplusplus + + _XMICON4() {}; + explicit _XMICON4(UINT64 Packed) : v(Packed) {}; + _XMICON4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMICON4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT64 () const { return v; } + + _XMICON4& operator= (CONST _XMICON4& IcoN4); + _XMICON4& operator= (CONST UINT64 Packed); + +#endif // __cplusplus + +} XMICON4; + +// 4D Vector; 20-20-20-4 bit components packed into a 64 bit integer +// The 4D Vector is packed into 64 bits as follows: a 4 bit signed, +// integer for the w component and 20 bit signed integers for the +// z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W4Z20Y20X20): [64] wwwwzzzz zzzzzzzz zzzzzzzz yyyyyyyy yyyyyyyy yyyyxxxx xxxxxxxx xxxxxxxx [0] +typedef struct _XMICO4 +{ + union + { + struct + { + INT64 x : 20; // -524287 to 524287 + INT64 y : 20; // -524287 to 524287 + INT64 z : 20; // -524287 to 524287 + INT64 w : 4; // -7 to 7 + }; + UINT64 v; + }; + +#ifdef __cplusplus + + _XMICO4() {}; + explicit _XMICO4(UINT64 Packed) : v(Packed) {}; + _XMICO4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMICO4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT64 () const { return v; } + + _XMICO4& operator= (CONST _XMICO4& Ico4); + _XMICO4& operator= (CONST UINT64 Packed); + +#endif // __cplusplus + +} XMICO4; + +// 4D Vector; 20-20-20-4 bit normalized components packed into a 64 bit integer +// The normalized 4D Vector is packed into 64 bits as follows: a 4 bit unsigned, +// normalized integer for the w component and 20 bit unsigned, normalized +// integers for the z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W4Z20Y20X20): [64] wwwwzzzz zzzzzzzz zzzzzzzz yyyyyyyy yyyyyyyy yyyyxxxx xxxxxxxx xxxxxxxx [0] +typedef struct _XMUICON4 +{ + union + { + struct + { + UINT64 x : 20; // 0/1048575 to 1048575/1048575 + UINT64 y : 20; // 0/1048575 to 1048575/1048575 + UINT64 z : 20; // 0/1048575 to 1048575/1048575 + UINT64 w : 4; // 0/15 to 15/15 + }; + UINT64 v; + }; + +#ifdef __cplusplus + + _XMUICON4() {}; + explicit _XMUICON4(UINT64 Packed) : v(Packed) {}; + _XMUICON4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMUICON4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT64 () const { return v; } + + _XMUICON4& operator= (CONST _XMUICON4& UIcoN4); + _XMUICON4& operator= (CONST UINT64 Packed); + +#endif // __cplusplus + +} XMUICON4; + +// 4D Vector; 20-20-20-4 bit components packed into a 64 bit integer +// The 4D Vector is packed into 64 bits as follows: a 4 bit unsigned +// integer for the w component and 20 bit unsigned integers for the +// z, y, and x components. The w component is stored in the +// most significant bits and the x component in the least significant bits +// (W4Z20Y20X20): [64] wwwwzzzz zzzzzzzz zzzzzzzz yyyyyyyy yyyyyyyy yyyyxxxx xxxxxxxx xxxxxxxx [0] +typedef struct _XMUICO4 +{ + union + { + struct + { + UINT64 x : 20; // 0 to 1048575 + UINT64 y : 20; // 0 to 1048575 + UINT64 z : 20; // 0 to 1048575 + UINT64 w : 4; // 0 to 15 + }; + UINT64 v; + }; + +#ifdef __cplusplus + + _XMUICO4() {}; + explicit _XMUICO4(UINT64 Packed) : v(Packed) {}; + _XMUICO4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMUICO4(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT64 () const { return v; } + + _XMUICO4& operator= (CONST _XMUICO4& UIco4); + _XMUICO4& operator= (CONST UINT64 Packed); + +#endif // __cplusplus + +} XMUICO4; + +//------------------------------------------------------------------------------ +// ARGB Color; 8-8-8-8 bit unsigned normalized integer components packed into +// a 32 bit integer. The normalized color is packed into 32 bits using 8 bit +// unsigned, normalized integers for the alpha, red, green, and blue components. +// The alpha component is stored in the most significant bits and the blue +// component in the least significant bits (A8R8G8B8): +// [32] aaaaaaaa rrrrrrrr gggggggg bbbbbbbb [0] +typedef struct _XMCOLOR +{ + union + { + struct + { + UINT b : 8; // Blue: 0/255 to 255/255 + UINT g : 8; // Green: 0/255 to 255/255 + UINT r : 8; // Red: 0/255 to 255/255 + UINT a : 8; // Alpha: 0/255 to 255/255 + }; + UINT c; + }; + +#ifdef __cplusplus + + _XMCOLOR() {}; + _XMCOLOR(UINT Color) : c(Color) {}; + _XMCOLOR(FLOAT _r, FLOAT _g, FLOAT _b, FLOAT _a); + explicit _XMCOLOR(_In_count_c_(4) CONST FLOAT *pArray); + + operator UINT () const { return c; } + + _XMCOLOR& operator= (CONST _XMCOLOR& Color); + _XMCOLOR& operator= (CONST UINT Color); + +#endif // __cplusplus + +} XMCOLOR; + +//------------------------------------------------------------------------------ +// 4D Vector; 8 bit signed normalized integer components +typedef struct _XMBYTEN4 +{ + union + { + struct + { + CHAR x; + CHAR y; + CHAR z; + CHAR w; + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMBYTEN4() {}; + _XMBYTEN4(CHAR _x, CHAR _y, CHAR _z, CHAR _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMBYTEN4(UINT Packed) : v(Packed) {}; + explicit _XMBYTEN4(_In_count_c_(4) CONST CHAR *pArray); + _XMBYTEN4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMBYTEN4(_In_count_c_(4) CONST FLOAT *pArray); + + _XMBYTEN4& operator= (CONST _XMBYTEN4& ByteN4); + _XMBYTEN4& operator= (UINT Packed) { v = Packed; return *this; } + +#endif // __cplusplus + +} XMBYTEN4; + +// 4D Vector; 8 bit signed integer components +typedef struct _XMBYTE4 +{ + union + { + struct + { + CHAR x; + CHAR y; + CHAR z; + CHAR w; + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMBYTE4() {}; + _XMBYTE4(CHAR _x, CHAR _y, CHAR _z, CHAR _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMBYTE4(UINT Packed) : v(Packed) {}; + explicit _XMBYTE4(_In_count_c_(4) CONST CHAR *pArray); + _XMBYTE4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMBYTE4(_In_count_c_(4) CONST FLOAT *pArray); + + _XMBYTE4& operator= (CONST _XMBYTE4& Byte4); + _XMBYTE4& operator= (UINT Packed) { v = Packed; return *this; } + +#endif // __cplusplus + +} XMBYTE4; + +// 4D Vector; 8 bit unsigned normalized integer components +typedef struct _XMUBYTEN4 +{ + union + { + struct + { + BYTE x; + BYTE y; + BYTE z; + BYTE w; + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMUBYTEN4() {}; + _XMUBYTEN4(BYTE _x, BYTE _y, BYTE _z, BYTE _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMUBYTEN4(UINT Packed) : v(Packed) {}; + explicit _XMUBYTEN4(_In_count_c_(4) CONST BYTE *pArray); + _XMUBYTEN4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMUBYTEN4(_In_count_c_(4) CONST FLOAT *pArray); + + _XMUBYTEN4& operator= (CONST _XMUBYTEN4& UByteN4); + _XMUBYTEN4& operator= (UINT Packed) { v = Packed; return *this; } + +#endif // __cplusplus + +} XMUBYTEN4; + +// 4D Vector; 8 bit unsigned integer components +typedef struct _XMUBYTE4 +{ + union + { + struct + { + BYTE x; + BYTE y; + BYTE z; + BYTE w; + }; + UINT v; + }; + +#ifdef __cplusplus + + _XMUBYTE4() {}; + _XMUBYTE4(BYTE _x, BYTE _y, BYTE _z, BYTE _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMUBYTE4(UINT Packed) : v(Packed) {}; + explicit _XMUBYTE4(_In_count_c_(4) CONST BYTE *pArray); + _XMUBYTE4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMUBYTE4(_In_count_c_(4) CONST FLOAT *pArray); + + _XMUBYTE4& operator= (CONST _XMUBYTE4& UByte4); + _XMUBYTE4& operator= (UINT Packed) { v = Packed; return *this; } + +#endif // __cplusplus + +} XMUBYTE4; + +//------------------------------------------------------------------------------ +// 4D vector; 4 bit unsigned integer components +typedef struct _XMUNIBBLE4 +{ + union + { + struct + { + USHORT x : 4; + USHORT y : 4; + USHORT z : 4; + USHORT w : 4; + }; + USHORT v; + }; + +#ifdef __cplusplus + + _XMUNIBBLE4() {}; + explicit _XMUNIBBLE4(USHORT Packed) : v(Packed) {}; + _XMUNIBBLE4(CHAR _x, CHAR _y, CHAR _z, CHAR _w) : x(_x), y(_y), z(_z), w(_w) {}; + explicit _XMUNIBBLE4(_In_count_c_(4) CONST CHAR *pArray); + _XMUNIBBLE4(FLOAT _x, FLOAT _y, FLOAT _z, FLOAT _w); + explicit _XMUNIBBLE4(_In_count_c_(4) CONST FLOAT *pArray); + + operator USHORT () const { return v; } + + _XMUNIBBLE4& operator= (CONST _XMUNIBBLE4& UNibble4); + _XMUNIBBLE4& operator= (CONST USHORT Packed); + +#endif // __cplusplus + +} XMUNIBBLE4; + +//------------------------------------------------------------------------------ +// 4D vector: 5/5/5/1 unsigned integer components +typedef struct _XMU555 +{ + union + { + struct + { + USHORT x : 5; + USHORT y : 5; + USHORT z : 5; + USHORT w : 1; + }; + USHORT v; + }; + +#ifdef __cplusplus + + _XMU555() {}; + explicit _XMU555(USHORT Packed) : v(Packed) {}; + _XMU555(CHAR _x, CHAR _y, CHAR _z, BOOL _w) : x(_x), y(_y), z(_z), w(_w ? 0x1 : 0) {}; + _XMU555(_In_count_c_(3) CONST CHAR *pArray, BOOL _w); + _XMU555(FLOAT _x, FLOAT _y, FLOAT _z, BOOL _w); + _XMU555(_In_count_c_(3) CONST FLOAT *pArray, BOOL _w); + + operator USHORT () const { return v; } + + _XMU555& operator= (CONST _XMU555& U555); + _XMU555& operator= (CONST USHORT Packed); + +#endif // __cplusplus + +} XMU555; + +//------------------------------------------------------------------------------ +// 3x3 Matrix: 32 bit floating point components +typedef struct _XMFLOAT3X3 +{ + union + { + struct + { + FLOAT _11, _12, _13; + FLOAT _21, _22, _23; + FLOAT _31, _32, _33; + }; + FLOAT m[3][3]; + }; + +#ifdef __cplusplus + + _XMFLOAT3X3() {}; + _XMFLOAT3X3(FLOAT m00, FLOAT m01, FLOAT m02, + FLOAT m10, FLOAT m11, FLOAT m12, + FLOAT m20, FLOAT m21, FLOAT m22); + explicit _XMFLOAT3X3(_In_count_c_(9) CONST FLOAT *pArray); + + FLOAT operator() (UINT Row, UINT Column) CONST { return m[Row][Column]; } + FLOAT& operator() (UINT Row, UINT Column) { return m[Row][Column]; } + + _XMFLOAT3X3& operator= (CONST _XMFLOAT3X3& Float3x3); + +#endif // __cplusplus + +} XMFLOAT3X3; + +//------------------------------------------------------------------------------ +// 4x3 Matrix: 32 bit floating point components +typedef struct _XMFLOAT4X3 +{ + union + { + struct + { + FLOAT _11, _12, _13; + FLOAT _21, _22, _23; + FLOAT _31, _32, _33; + FLOAT _41, _42, _43; + }; + FLOAT m[4][3]; + }; + +#ifdef __cplusplus + + _XMFLOAT4X3() {}; + _XMFLOAT4X3(FLOAT m00, FLOAT m01, FLOAT m02, + FLOAT m10, FLOAT m11, FLOAT m12, + FLOAT m20, FLOAT m21, FLOAT m22, + FLOAT m30, FLOAT m31, FLOAT m32); + explicit _XMFLOAT4X3(_In_count_c_(12) CONST FLOAT *pArray); + + FLOAT operator() (UINT Row, UINT Column) CONST { return m[Row][Column]; } + FLOAT& operator() (UINT Row, UINT Column) { return m[Row][Column]; } + + _XMFLOAT4X3& operator= (CONST _XMFLOAT4X3& Float4x3); + +#endif // __cplusplus + +} XMFLOAT4X3; + +// 4x3 Matrix: 32 bit floating point components aligned on a 16 byte boundary +#ifdef __cplusplus +__declspec(align(16)) struct XMFLOAT4X3A : public XMFLOAT4X3 +{ + XMFLOAT4X3A() : XMFLOAT4X3() {}; + XMFLOAT4X3A(FLOAT m00, FLOAT m01, FLOAT m02, + FLOAT m10, FLOAT m11, FLOAT m12, + FLOAT m20, FLOAT m21, FLOAT m22, + FLOAT m30, FLOAT m31, FLOAT m32) : + XMFLOAT4X3(m00,m01,m02,m10,m11,m12,m20,m21,m22,m30,m31,m32) {}; + explicit XMFLOAT4X3A(_In_count_c_(12) CONST FLOAT *pArray) : XMFLOAT4X3(pArray) {} + + FLOAT operator() (UINT Row, UINT Column) CONST { return m[Row][Column]; } + FLOAT& operator() (UINT Row, UINT Column) { return m[Row][Column]; } + + XMFLOAT4X3A& operator= (CONST XMFLOAT4X3A& Float4x3); +}; +#else +typedef __declspec(align(16)) XMFLOAT4X3 XMFLOAT4X3A; +#endif // __cplusplus + +//------------------------------------------------------------------------------ +// 4x4 Matrix: 32 bit floating point components +typedef struct _XMFLOAT4X4 +{ + union + { + struct + { + FLOAT _11, _12, _13, _14; + FLOAT _21, _22, _23, _24; + FLOAT _31, _32, _33, _34; + FLOAT _41, _42, _43, _44; + }; + FLOAT m[4][4]; + }; + +#ifdef __cplusplus + + _XMFLOAT4X4() {}; + _XMFLOAT4X4(FLOAT m00, FLOAT m01, FLOAT m02, FLOAT m03, + FLOAT m10, FLOAT m11, FLOAT m12, FLOAT m13, + FLOAT m20, FLOAT m21, FLOAT m22, FLOAT m23, + FLOAT m30, FLOAT m31, FLOAT m32, FLOAT m33); + explicit _XMFLOAT4X4(_In_count_c_(16) CONST FLOAT *pArray); + + FLOAT operator() (UINT Row, UINT Column) CONST { return m[Row][Column]; } + FLOAT& operator() (UINT Row, UINT Column) { return m[Row][Column]; } + + _XMFLOAT4X4& operator= (CONST _XMFLOAT4X4& Float4x4); + +#endif // __cplusplus + +} XMFLOAT4X4; + +// 4x4 Matrix: 32 bit floating point components aligned on a 16 byte boundary +#ifdef __cplusplus +__declspec(align(16)) struct XMFLOAT4X4A : public XMFLOAT4X4 +{ + XMFLOAT4X4A() : XMFLOAT4X4() {}; + XMFLOAT4X4A(FLOAT m00, FLOAT m01, FLOAT m02, FLOAT m03, + FLOAT m10, FLOAT m11, FLOAT m12, FLOAT m13, + FLOAT m20, FLOAT m21, FLOAT m22, FLOAT m23, + FLOAT m30, FLOAT m31, FLOAT m32, FLOAT m33) + : XMFLOAT4X4(m00,m01,m02,m03,m10,m11,m12,m13,m20,m21,m22,m23,m30,m31,m32,m33) {}; + explicit XMFLOAT4X4A(_In_count_c_(16) CONST FLOAT *pArray) : XMFLOAT4X4(pArray) {} + + FLOAT operator() (UINT Row, UINT Column) CONST { return m[Row][Column]; } + FLOAT& operator() (UINT Row, UINT Column) { return m[Row][Column]; } + + XMFLOAT4X4A& operator= (CONST XMFLOAT4X4A& Float4x4); +}; +#else +typedef __declspec(align(16)) XMFLOAT4X4 XMFLOAT4X4A; +#endif // __cplusplus + + +#ifdef _XM_BIGENDIAN_ +#pragma bitfield_order(pop) +#endif + +#pragma warning(pop) + +/**************************************************************************** + * + * Data conversion operations + * + ****************************************************************************/ + +#if !defined(_XM_NO_INTRINSICS_) && defined(_XM_VMX128_INTRINSICS_) +#else +XMVECTOR XMConvertVectorIntToFloat(FXMVECTOR VInt, UINT DivExponent); +XMVECTOR XMConvertVectorFloatToInt(FXMVECTOR VFloat, UINT MulExponent); +XMVECTOR XMConvertVectorUIntToFloat(FXMVECTOR VUInt, UINT DivExponent); +XMVECTOR XMConvertVectorFloatToUInt(FXMVECTOR VFloat, UINT MulExponent); +#endif + +FLOAT XMConvertHalfToFloat(HALF Value); +FLOAT* XMConvertHalfToFloatStream(_Out_bytecap_x_(sizeof(FLOAT)+OutputStride*(HalfCount-1)) FLOAT* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(HALF)+InputStride*(HalfCount-1)) CONST HALF* pInputStream, + _In_ size_t InputStride, _In_ size_t HalfCount); +HALF XMConvertFloatToHalf(FLOAT Value); +HALF* XMConvertFloatToHalfStream(_Out_bytecap_x_(sizeof(HALF)+OutputStride*(FloatCount-1)) HALF* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(FLOAT)+InputStride*(FloatCount-1)) CONST FLOAT* pInputStream, + _In_ size_t InputStride, _In_ size_t FloatCount); + +#if defined(_XM_NO_INTRINSICS_) || defined(_XM_SSE_INTRINSICS_) +XMVECTOR XMVectorSetBinaryConstant(UINT C0, UINT C1, UINT C2, UINT C3); +XMVECTOR XMVectorSplatConstant(INT IntConstant, UINT DivExponent); +XMVECTOR XMVectorSplatConstantInt(INT IntConstant); + +// VMX128 versions defined below as macros +#endif + +/**************************************************************************** + * + * Load operations + * + ****************************************************************************/ + +XMVECTOR XMLoadInt(_In_ CONST UINT* pSource); +XMVECTOR XMLoadFloat(_In_ CONST FLOAT* pSource); + +XMVECTOR XMLoadInt2(_In_count_c_(2) CONST UINT* pSource); +XMVECTOR XMLoadInt2A(_In_count_c_(2) CONST UINT* PSource); +XMVECTOR XMLoadFloat2(_In_ CONST XMFLOAT2* pSource); +XMVECTOR XMLoadFloat2A(_In_ CONST XMFLOAT2A* pSource); +XMVECTOR XMLoadSInt2(_In_ CONST XMINT2* pSource); +XMVECTOR XMLoadUInt2(_In_ CONST XMUINT2* pSource); +XMVECTOR XMLoadHalf2(_In_ CONST XMHALF2* pSource); +XMVECTOR XMLoadShortN2(_In_ CONST XMSHORTN2* pSource); +XMVECTOR XMLoadShort2(_In_ CONST XMSHORT2* pSource); +XMVECTOR XMLoadUShortN2(_In_ CONST XMUSHORTN2* pSource); +XMVECTOR XMLoadUShort2(_In_ CONST XMUSHORT2* pSource); +XMVECTOR XMLoadByteN2(_In_ CONST XMBYTEN2* pSource); +XMVECTOR XMLoadByte2(_In_ CONST XMBYTE2* pSource); +XMVECTOR XMLoadUByteN2(_In_ CONST XMUBYTEN2* pSource); +XMVECTOR XMLoadUByte2(_In_ CONST XMUBYTE2* pSource); + +XMVECTOR XMLoadInt3(_In_count_c_(3) CONST UINT* pSource); +XMVECTOR XMLoadInt3A(_In_count_c_(3) CONST UINT* pSource); +XMVECTOR XMLoadFloat3(_In_ CONST XMFLOAT3* pSource); +XMVECTOR XMLoadFloat3A(_In_ CONST XMFLOAT3A* pSource); +XMVECTOR XMLoadSInt3(_In_ CONST XMINT3* pSource); +XMVECTOR XMLoadUInt3(_In_ CONST XMUINT3* pSource); +XMVECTOR XMLoadHenDN3(_In_ CONST XMHENDN3* pSource); +XMVECTOR XMLoadHenD3(_In_ CONST XMHEND3* pSource); +XMVECTOR XMLoadUHenDN3(_In_ CONST XMUHENDN3* pSource); +XMVECTOR XMLoadUHenD3(_In_ CONST XMUHEND3* pSource); +XMVECTOR XMLoadDHenN3(_In_ CONST XMDHENN3* pSource); +XMVECTOR XMLoadDHen3(_In_ CONST XMDHEN3* pSource); +XMVECTOR XMLoadUDHenN3(_In_ CONST XMUDHENN3* pSource); +XMVECTOR XMLoadUDHen3(_In_ CONST XMUDHEN3* pSource); +XMVECTOR XMLoadU565(_In_ CONST XMU565* pSource); +XMVECTOR XMLoadFloat3PK(_In_ CONST XMFLOAT3PK* pSource); +XMVECTOR XMLoadFloat3SE(_In_ CONST XMFLOAT3SE* pSource); + +XMVECTOR XMLoadInt4(_In_count_c_(4) CONST UINT* pSource); +XMVECTOR XMLoadInt4A(_In_count_c_(4) CONST UINT* pSource); +XMVECTOR XMLoadFloat4(_In_ CONST XMFLOAT4* pSource); +XMVECTOR XMLoadFloat4A(_In_ CONST XMFLOAT4A* pSource); +XMVECTOR XMLoadSInt4(_In_ CONST XMINT4* pSource); +XMVECTOR XMLoadUInt4(_In_ CONST XMUINT4* pSource); +XMVECTOR XMLoadHalf4(_In_ CONST XMHALF4* pSource); +XMVECTOR XMLoadShortN4(_In_ CONST XMSHORTN4* pSource); +XMVECTOR XMLoadShort4(_In_ CONST XMSHORT4* pSource); +XMVECTOR XMLoadUShortN4(_In_ CONST XMUSHORTN4* pSource); +XMVECTOR XMLoadUShort4(_In_ CONST XMUSHORT4* pSource); +XMVECTOR XMLoadXIcoN4(_In_ CONST XMXICON4* pSource); +XMVECTOR XMLoadXIco4(_In_ CONST XMXICO4* pSource); +XMVECTOR XMLoadIcoN4(_In_ CONST XMICON4* pSource); +XMVECTOR XMLoadIco4(_In_ CONST XMICO4* pSource); +XMVECTOR XMLoadUIcoN4(_In_ CONST XMUICON4* pSource); +XMVECTOR XMLoadUIco4(_In_ CONST XMUICO4* pSource); +XMVECTOR XMLoadXDecN4(_In_ CONST XMXDECN4* pSource); +XMVECTOR XMLoadXDec4(_In_ CONST XMXDEC4* pSource); +XMVECTOR XMLoadDecN4(_In_ CONST XMDECN4* pSource); +XMVECTOR XMLoadDec4(_In_ CONST XMDEC4* pSource); +XMVECTOR XMLoadUDecN4(_In_ CONST XMUDECN4* pSource); +XMVECTOR XMLoadUDec4(_In_ CONST XMUDEC4* pSource); +XMVECTOR XMLoadByteN4(_In_ CONST XMBYTEN4* pSource); +XMVECTOR XMLoadByte4(_In_ CONST XMBYTE4* pSource); +XMVECTOR XMLoadUByteN4(_In_ CONST XMUBYTEN4* pSource); +XMVECTOR XMLoadUByte4(_In_ CONST XMUBYTE4* pSource); +XMVECTOR XMLoadUNibble4(_In_ CONST XMUNIBBLE4* pSource); +XMVECTOR XMLoadU555(_In_ CONST XMU555* pSource); +XMVECTOR XMLoadColor(_In_ CONST XMCOLOR* pSource); + +XMMATRIX XMLoadFloat3x3(_In_ CONST XMFLOAT3X3* pSource); +XMMATRIX XMLoadFloat4x3(_In_ CONST XMFLOAT4X3* pSource); +XMMATRIX XMLoadFloat4x3A(_In_ CONST XMFLOAT4X3A* pSource); +XMMATRIX XMLoadFloat4x4(_In_ CONST XMFLOAT4X4* pSource); +XMMATRIX XMLoadFloat4x4A(_In_ CONST XMFLOAT4X4A* pSource); + +/**************************************************************************** + * + * Store operations + * + ****************************************************************************/ + +VOID XMStoreInt(_Out_ UINT* pDestination, FXMVECTOR V); +VOID XMStoreFloat(_Out_ FLOAT* pDestination, FXMVECTOR V); + +VOID XMStoreInt2(_Out_cap_c_(2) UINT* pDestination, FXMVECTOR V); +VOID XMStoreInt2A(_Out_cap_c_(2) UINT* pDestination, FXMVECTOR V); +VOID XMStoreFloat2(_Out_ XMFLOAT2* pDestination, FXMVECTOR V); +VOID XMStoreFloat2A(_Out_ XMFLOAT2A* pDestination, FXMVECTOR V); +VOID XMStoreSInt2(_Out_ XMINT2* pDestination, FXMVECTOR V); +VOID XMStoreUInt2(_Out_ XMUINT2* pDestination, FXMVECTOR V); +VOID XMStoreHalf2(_Out_ XMHALF2* pDestination, FXMVECTOR V); +VOID XMStoreShortN2(_Out_ XMSHORTN2* pDestination, FXMVECTOR V); +VOID XMStoreShort2(_Out_ XMSHORT2* pDestination, FXMVECTOR V); +VOID XMStoreUShortN2(_Out_ XMUSHORTN2* pDestination, FXMVECTOR V); +VOID XMStoreUShort2(_Out_ XMUSHORT2* pDestination, FXMVECTOR V); +VOID XMStoreByteN2(_Out_ XMBYTEN2* pDestination, FXMVECTOR V); +VOID XMStoreByte2(_Out_ XMBYTE2* pDestination, FXMVECTOR V); +VOID XMStoreUByteN2(_Out_ XMUBYTEN2* pDestination, FXMVECTOR V); +VOID XMStoreUByte2(_Out_ XMUBYTE2* pDestination, FXMVECTOR V); + +VOID XMStoreInt3(_Out_cap_c_(3) UINT* pDestination, FXMVECTOR V); +VOID XMStoreInt3A(_Out_cap_c_(3) UINT* pDestination, FXMVECTOR V); +VOID XMStoreFloat3(_Out_ XMFLOAT3* pDestination, FXMVECTOR V); +VOID XMStoreFloat3A(_Out_ XMFLOAT3A* pDestination, FXMVECTOR V); +VOID XMStoreSInt3(_Out_ XMINT3* pDestination, FXMVECTOR V); +VOID XMStoreUInt3(_Out_ XMUINT3* pDestination, FXMVECTOR V); +VOID XMStoreHenDN3(_Out_ XMHENDN3* pDestination, FXMVECTOR V); +VOID XMStoreHenD3(_Out_ XMHEND3* pDestination, FXMVECTOR V); +VOID XMStoreUHenDN3(_Out_ XMUHENDN3* pDestination, FXMVECTOR V); +VOID XMStoreUHenD3(_Out_ XMUHEND3* pDestination, FXMVECTOR V); +VOID XMStoreDHenN3(_Out_ XMDHENN3* pDestination, FXMVECTOR V); +VOID XMStoreDHen3(_Out_ XMDHEN3* pDestination, FXMVECTOR V); +VOID XMStoreUDHenN3(_Out_ XMUDHENN3* pDestination, FXMVECTOR V); +VOID XMStoreUDHen3(_Out_ XMUDHEN3* pDestination, FXMVECTOR V); +VOID XMStoreU565(_Out_ XMU565* pDestination, FXMVECTOR V); +VOID XMStoreFloat3PK(_Out_ XMFLOAT3PK* pDestination, FXMVECTOR V); +VOID XMStoreFloat3SE(_Out_ XMFLOAT3SE* pDestination, FXMVECTOR V); + +VOID XMStoreInt4(_Out_cap_c_(4) UINT* pDestination, FXMVECTOR V); +VOID XMStoreInt4A(_Out_cap_c_(4) UINT* pDestination, FXMVECTOR V); +VOID XMStoreInt4NC(_Out_cap_c_(4) UINT* pDestination, FXMVECTOR V); +VOID XMStoreFloat4(_Out_ XMFLOAT4* pDestination, FXMVECTOR V); +VOID XMStoreFloat4A(_Out_ XMFLOAT4A* pDestination, FXMVECTOR V); +VOID XMStoreFloat4NC(_Out_ XMFLOAT4* pDestination, FXMVECTOR V); +VOID XMStoreSInt4(_Out_ XMINT4* pDestination, FXMVECTOR V); +VOID XMStoreUInt4(_Out_ XMUINT4* pDestination, FXMVECTOR V); +VOID XMStoreHalf4(_Out_ XMHALF4* pDestination, FXMVECTOR V); +VOID XMStoreShortN4(_Out_ XMSHORTN4* pDestination, FXMVECTOR V); +VOID XMStoreShort4(_Out_ XMSHORT4* pDestination, FXMVECTOR V); +VOID XMStoreUShortN4(_Out_ XMUSHORTN4* pDestination, FXMVECTOR V); +VOID XMStoreUShort4(_Out_ XMUSHORT4* pDestination, FXMVECTOR V); +VOID XMStoreXIcoN4(_Out_ XMXICON4* pDestination, FXMVECTOR V); +VOID XMStoreXIco4(_Out_ XMXICO4* pDestination, FXMVECTOR V); +VOID XMStoreIcoN4(_Out_ XMICON4* pDestination, FXMVECTOR V); +VOID XMStoreIco4(_Out_ XMICO4* pDestination, FXMVECTOR V); +VOID XMStoreUIcoN4(_Out_ XMUICON4* pDestination, FXMVECTOR V); +VOID XMStoreUIco4(_Out_ XMUICO4* pDestination, FXMVECTOR V); +VOID XMStoreXDecN4(_Out_ XMXDECN4* pDestination, FXMVECTOR V); +VOID XMStoreXDec4(_Out_ XMXDEC4* pDestination, FXMVECTOR V); +VOID XMStoreDecN4(_Out_ XMDECN4* pDestination, FXMVECTOR V); +VOID XMStoreDec4(_Out_ XMDEC4* pDestination, FXMVECTOR V); +VOID XMStoreUDecN4(_Out_ XMUDECN4* pDestination, FXMVECTOR V); +VOID XMStoreUDec4(_Out_ XMUDEC4* pDestination, FXMVECTOR V); +VOID XMStoreByteN4(_Out_ XMBYTEN4* pDestination, FXMVECTOR V); +VOID XMStoreByte4(_Out_ XMBYTE4* pDestination, FXMVECTOR V); +VOID XMStoreUByteN4(_Out_ XMUBYTEN4* pDestination, FXMVECTOR V); +VOID XMStoreUByte4(_Out_ XMUBYTE4* pDestination, FXMVECTOR V); +VOID XMStoreUNibble4(_Out_ XMUNIBBLE4* pDestination, FXMVECTOR V); +VOID XMStoreU555(_Out_ XMU555* pDestination, FXMVECTOR V); +VOID XMStoreColor(_Out_ XMCOLOR* pDestination, FXMVECTOR V); + +VOID XMStoreFloat3x3(_Out_ XMFLOAT3X3* pDestination, CXMMATRIX M); +VOID XMStoreFloat3x3NC(_Out_ XMFLOAT3X3* pDestination, CXMMATRIX M); +VOID XMStoreFloat4x3(_Out_ XMFLOAT4X3* pDestination, CXMMATRIX M); +VOID XMStoreFloat4x3A(_Out_ XMFLOAT4X3A* pDestination, CXMMATRIX M); +VOID XMStoreFloat4x3NC(_Out_ XMFLOAT4X3* pDestination, CXMMATRIX M); +VOID XMStoreFloat4x4(_Out_ XMFLOAT4X4* pDestination, CXMMATRIX M); +VOID XMStoreFloat4x4A(_Out_ XMFLOAT4X4A* pDestination, CXMMATRIX M); +VOID XMStoreFloat4x4NC(_Out_ XMFLOAT4X4* pDestination, CXMMATRIX M); + +/**************************************************************************** + * + * General vector operations + * + ****************************************************************************/ + +XMVECTOR XMVectorZero(); +XMVECTOR XMVectorSet(FLOAT x, FLOAT y, FLOAT z, FLOAT w); +XMVECTOR XMVectorSetInt(UINT x, UINT y, UINT z, UINT w); +XMVECTOR XMVectorReplicate(FLOAT Value); +XMVECTOR XMVectorReplicatePtr(_In_ CONST FLOAT *pValue); +XMVECTOR XMVectorReplicateInt(UINT Value); +XMVECTOR XMVectorReplicateIntPtr(_In_ CONST UINT *pValue); +XMVECTOR XMVectorTrueInt(); +XMVECTOR XMVectorFalseInt(); +XMVECTOR XMVectorSplatX(FXMVECTOR V); +XMVECTOR XMVectorSplatY(FXMVECTOR V); +XMVECTOR XMVectorSplatZ(FXMVECTOR V); +XMVECTOR XMVectorSplatW(FXMVECTOR V); +XMVECTOR XMVectorSplatOne(); +XMVECTOR XMVectorSplatInfinity(); +XMVECTOR XMVectorSplatQNaN(); +XMVECTOR XMVectorSplatEpsilon(); +XMVECTOR XMVectorSplatSignMask(); + +FLOAT XMVectorGetByIndex(FXMVECTOR V,UINT i); +FLOAT XMVectorGetX(FXMVECTOR V); +FLOAT XMVectorGetY(FXMVECTOR V); +FLOAT XMVectorGetZ(FXMVECTOR V); +FLOAT XMVectorGetW(FXMVECTOR V); + +VOID XMVectorGetByIndexPtr(_Out_ FLOAT *f, FXMVECTOR V, UINT i); +VOID XMVectorGetXPtr(_Out_ FLOAT *x, FXMVECTOR V); +VOID XMVectorGetYPtr(_Out_ FLOAT *y, FXMVECTOR V); +VOID XMVectorGetZPtr(_Out_ FLOAT *z, FXMVECTOR V); +VOID XMVectorGetWPtr(_Out_ FLOAT *w, FXMVECTOR V); + +UINT XMVectorGetIntByIndex(FXMVECTOR V,UINT i); +UINT XMVectorGetIntX(FXMVECTOR V); +UINT XMVectorGetIntY(FXMVECTOR V); +UINT XMVectorGetIntZ(FXMVECTOR V); +UINT XMVectorGetIntW(FXMVECTOR V); + +VOID XMVectorGetIntByIndexPtr(_Out_ UINT *x,FXMVECTOR V, UINT i); +VOID XMVectorGetIntXPtr(_Out_ UINT *x, FXMVECTOR V); +VOID XMVectorGetIntYPtr(_Out_ UINT *y, FXMVECTOR V); +VOID XMVectorGetIntZPtr(_Out_ UINT *z, FXMVECTOR V); +VOID XMVectorGetIntWPtr(_Out_ UINT *w, FXMVECTOR V); + +XMVECTOR XMVectorSetByIndex(FXMVECTOR V,FLOAT f,UINT i); +XMVECTOR XMVectorSetX(FXMVECTOR V, FLOAT x); +XMVECTOR XMVectorSetY(FXMVECTOR V, FLOAT y); +XMVECTOR XMVectorSetZ(FXMVECTOR V, FLOAT z); +XMVECTOR XMVectorSetW(FXMVECTOR V, FLOAT w); + +XMVECTOR XMVectorSetByIndexPtr(FXMVECTOR V, _In_ CONST FLOAT *f, UINT i); +XMVECTOR XMVectorSetXPtr(FXMVECTOR V, _In_ CONST FLOAT *x); +XMVECTOR XMVectorSetYPtr(FXMVECTOR V, _In_ CONST FLOAT *y); +XMVECTOR XMVectorSetZPtr(FXMVECTOR V, _In_ CONST FLOAT *z); +XMVECTOR XMVectorSetWPtr(FXMVECTOR V, _In_ CONST FLOAT *w); + +XMVECTOR XMVectorSetIntByIndex(FXMVECTOR V, UINT x,UINT i); +XMVECTOR XMVectorSetIntX(FXMVECTOR V, UINT x); +XMVECTOR XMVectorSetIntY(FXMVECTOR V, UINT y); +XMVECTOR XMVectorSetIntZ(FXMVECTOR V, UINT z); +XMVECTOR XMVectorSetIntW(FXMVECTOR V, UINT w); + +XMVECTOR XMVectorSetIntByIndexPtr(FXMVECTOR V, _In_ CONST UINT *x, UINT i); +XMVECTOR XMVectorSetIntXPtr(FXMVECTOR V, _In_ CONST UINT *x); +XMVECTOR XMVectorSetIntYPtr(FXMVECTOR V, _In_ CONST UINT *y); +XMVECTOR XMVectorSetIntZPtr(FXMVECTOR V, _In_ CONST UINT *z); +XMVECTOR XMVectorSetIntWPtr(FXMVECTOR V, _In_ CONST UINT *w); + +XMVECTOR XMVectorPermuteControl(UINT ElementIndex0, UINT ElementIndex1, UINT ElementIndex2, UINT ElementIndex3); +XMVECTOR XMVectorPermute(FXMVECTOR V1, FXMVECTOR V2, FXMVECTOR Control); +XMVECTOR XMVectorSelectControl(UINT VectorIndex0, UINT VectorIndex1, UINT VectorIndex2, UINT VectorIndex3); +XMVECTOR XMVectorSelect(FXMVECTOR V1, FXMVECTOR V2, FXMVECTOR Control); +XMVECTOR XMVectorMergeXY(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorMergeZW(FXMVECTOR V1, FXMVECTOR V2); + +#if defined(_XM_NO_INTRINSICS_) || defined(_XM_SSE_INTRINSICS_) +XMVECTOR XMVectorShiftLeft(FXMVECTOR V1, FXMVECTOR V2, UINT Elements); +XMVECTOR XMVectorRotateLeft(FXMVECTOR V, UINT Elements); +XMVECTOR XMVectorRotateRight(FXMVECTOR V, UINT Elements); +XMVECTOR XMVectorSwizzle(FXMVECTOR V, UINT E0, UINT E1, UINT E2, UINT E3); +XMVECTOR XMVectorInsert(FXMVECTOR VD, FXMVECTOR VS, UINT VSLeftRotateElements, + UINT Select0, UINT Select1, UINT Select2, UINT Select3); + +// VMX128 versions defined below as macros +#endif + +XMVECTOR XMVectorEqual(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorEqualR(_Out_ UINT* pCR, FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorEqualInt(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorEqualIntR(_Out_ UINT* pCR, FXMVECTOR V, FXMVECTOR V2); +XMVECTOR XMVectorNearEqual(FXMVECTOR V1, FXMVECTOR V2, FXMVECTOR Epsilon); +XMVECTOR XMVectorNotEqual(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorNotEqualInt(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorGreater(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorGreaterR(_Out_ UINT* pCR, FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorGreaterOrEqual(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorGreaterOrEqualR(_Out_ UINT* pCR, FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorLess(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorLessOrEqual(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorInBounds(FXMVECTOR V, FXMVECTOR Bounds); +XMVECTOR XMVectorInBoundsR(_Out_ UINT* pCR, FXMVECTOR V, FXMVECTOR Bounds); + +XMVECTOR XMVectorIsNaN(FXMVECTOR V); +XMVECTOR XMVectorIsInfinite(FXMVECTOR V); + +XMVECTOR XMVectorMin(FXMVECTOR V1,FXMVECTOR V2); +XMVECTOR XMVectorMax(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorRound(FXMVECTOR V); +XMVECTOR XMVectorTruncate(FXMVECTOR V); +XMVECTOR XMVectorFloor(FXMVECTOR V); +XMVECTOR XMVectorCeiling(FXMVECTOR V); +XMVECTOR XMVectorClamp(FXMVECTOR V, FXMVECTOR Min, FXMVECTOR Max); +XMVECTOR XMVectorSaturate(FXMVECTOR V); + +XMVECTOR XMVectorAndInt(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorAndCInt(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorOrInt(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorNorInt(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorXorInt(FXMVECTOR V1, FXMVECTOR V2); + +XMVECTOR XMVectorNegate(FXMVECTOR V); +XMVECTOR XMVectorAdd(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorAddAngles(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorSubtract(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorSubtractAngles(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorMultiply(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorMultiplyAdd(FXMVECTOR V1, FXMVECTOR V2, FXMVECTOR V3); +XMVECTOR XMVectorDivide(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorNegativeMultiplySubtract(FXMVECTOR V1, FXMVECTOR V2, FXMVECTOR V3); +XMVECTOR XMVectorScale(FXMVECTOR V, FLOAT ScaleFactor); +XMVECTOR XMVectorReciprocalEst(FXMVECTOR V); +XMVECTOR XMVectorReciprocal(FXMVECTOR V); +XMVECTOR XMVectorSqrtEst(FXMVECTOR V); +XMVECTOR XMVectorSqrt(FXMVECTOR V); +XMVECTOR XMVectorReciprocalSqrtEst(FXMVECTOR V); +XMVECTOR XMVectorReciprocalSqrt(FXMVECTOR V); +XMVECTOR XMVectorExpEst(FXMVECTOR V); +XMVECTOR XMVectorExp(FXMVECTOR V); +XMVECTOR XMVectorLogEst(FXMVECTOR V); +XMVECTOR XMVectorLog(FXMVECTOR V); +XMVECTOR XMVectorPowEst(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorPow(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorAbs(FXMVECTOR V); +XMVECTOR XMVectorMod(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVectorModAngles(FXMVECTOR Angles); +XMVECTOR XMVectorSin(FXMVECTOR V); +XMVECTOR XMVectorSinEst(FXMVECTOR V); +XMVECTOR XMVectorCos(FXMVECTOR V); +XMVECTOR XMVectorCosEst(FXMVECTOR V); +VOID XMVectorSinCos(_Out_ XMVECTOR* pSin, _Out_ XMVECTOR* pCos, FXMVECTOR V); +VOID XMVectorSinCosEst(_Out_ XMVECTOR* pSin, _Out_ XMVECTOR* pCos, FXMVECTOR V); +XMVECTOR XMVectorTan(FXMVECTOR V); +XMVECTOR XMVectorTanEst(FXMVECTOR V); +XMVECTOR XMVectorSinH(FXMVECTOR V); +XMVECTOR XMVectorSinHEst(FXMVECTOR V); +XMVECTOR XMVectorCosH(FXMVECTOR V); +XMVECTOR XMVectorCosHEst(FXMVECTOR V); +XMVECTOR XMVectorTanH(FXMVECTOR V); +XMVECTOR XMVectorTanHEst(FXMVECTOR V); +XMVECTOR XMVectorASin(FXMVECTOR V); +XMVECTOR XMVectorASinEst(FXMVECTOR V); +XMVECTOR XMVectorACos(FXMVECTOR V); +XMVECTOR XMVectorACosEst(FXMVECTOR V); +XMVECTOR XMVectorATan(FXMVECTOR V); +XMVECTOR XMVectorATanEst(FXMVECTOR V); +XMVECTOR XMVectorATan2(FXMVECTOR Y, FXMVECTOR X); +XMVECTOR XMVectorATan2Est(FXMVECTOR Y, FXMVECTOR X); +XMVECTOR XMVectorLerp(FXMVECTOR V0, FXMVECTOR V1, FLOAT t); +XMVECTOR XMVectorLerpV(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR T); +XMVECTOR XMVectorHermite(FXMVECTOR Position0, FXMVECTOR Tangent0, FXMVECTOR Position1, CXMVECTOR Tangent1, FLOAT t); +XMVECTOR XMVectorHermiteV(FXMVECTOR Position0, FXMVECTOR Tangent0, FXMVECTOR Position1, CXMVECTOR Tangent1, CXMVECTOR T); +XMVECTOR XMVectorCatmullRom(FXMVECTOR Position0, FXMVECTOR Position1, FXMVECTOR Position2, CXMVECTOR Position3, FLOAT t); +XMVECTOR XMVectorCatmullRomV(FXMVECTOR Position0, FXMVECTOR Position1, FXMVECTOR Position2, CXMVECTOR Position3, CXMVECTOR T); +XMVECTOR XMVectorBaryCentric(FXMVECTOR Position0, FXMVECTOR Position1, FXMVECTOR Position2, FLOAT f, FLOAT g); +XMVECTOR XMVectorBaryCentricV(FXMVECTOR Position0, FXMVECTOR Position1, FXMVECTOR Position2, CXMVECTOR F, CXMVECTOR G); + +/**************************************************************************** + * + * 2D vector operations + * + ****************************************************************************/ + + +BOOL XMVector2Equal(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector2EqualR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector2EqualInt(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector2EqualIntR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector2NearEqual(FXMVECTOR V1, FXMVECTOR V2, FXMVECTOR Epsilon); +BOOL XMVector2NotEqual(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector2NotEqualInt(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector2Greater(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector2GreaterR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector2GreaterOrEqual(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector2GreaterOrEqualR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector2Less(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector2LessOrEqual(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector2InBounds(FXMVECTOR V, FXMVECTOR Bounds); +UINT XMVector2InBoundsR(FXMVECTOR V, FXMVECTOR Bounds); + +BOOL XMVector2IsNaN(FXMVECTOR V); +BOOL XMVector2IsInfinite(FXMVECTOR V); + +XMVECTOR XMVector2Dot(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVector2Cross(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVector2LengthSq(FXMVECTOR V); +XMVECTOR XMVector2ReciprocalLengthEst(FXMVECTOR V); +XMVECTOR XMVector2ReciprocalLength(FXMVECTOR V); +XMVECTOR XMVector2LengthEst(FXMVECTOR V); +XMVECTOR XMVector2Length(FXMVECTOR V); +XMVECTOR XMVector2NormalizeEst(FXMVECTOR V); +XMVECTOR XMVector2Normalize(FXMVECTOR V); +XMVECTOR XMVector2ClampLength(FXMVECTOR V, FLOAT LengthMin, FLOAT LengthMax); +XMVECTOR XMVector2ClampLengthV(FXMVECTOR V, FXMVECTOR LengthMin, FXMVECTOR LengthMax); +XMVECTOR XMVector2Reflect(FXMVECTOR Incident, FXMVECTOR Normal); +XMVECTOR XMVector2Refract(FXMVECTOR Incident, FXMVECTOR Normal, FLOAT RefractionIndex); +XMVECTOR XMVector2RefractV(FXMVECTOR Incident, FXMVECTOR Normal, FXMVECTOR RefractionIndex); +XMVECTOR XMVector2Orthogonal(FXMVECTOR V); +XMVECTOR XMVector2AngleBetweenNormalsEst(FXMVECTOR N1, FXMVECTOR N2); +XMVECTOR XMVector2AngleBetweenNormals(FXMVECTOR N1, FXMVECTOR N2); +XMVECTOR XMVector2AngleBetweenVectors(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVector2LinePointDistance(FXMVECTOR LinePoint1, FXMVECTOR LinePoint2, FXMVECTOR Point); +XMVECTOR XMVector2IntersectLine(FXMVECTOR Line1Point1, FXMVECTOR Line1Point2, FXMVECTOR Line2Point1, CXMVECTOR Line2Point2); +XMVECTOR XMVector2Transform(FXMVECTOR V, CXMMATRIX M); +XMFLOAT4* XMVector2TransformStream(_Out_bytecap_x_(sizeof(XMFLOAT4)+OutputStride*(VectorCount-1)) XMFLOAT4* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT2)+InputStride*(VectorCount-1)) CONST XMFLOAT2* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, CXMMATRIX M); +XMFLOAT4* XMVector2TransformStreamNC(_Out_bytecap_x_(sizeof(XMFLOAT4)+OutputStride*(VectorCount-1)) XMFLOAT4* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT2)+InputStride*(VectorCount-1)) CONST XMFLOAT2* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, CXMMATRIX M); +XMVECTOR XMVector2TransformCoord(FXMVECTOR V, CXMMATRIX M); +XMFLOAT2* XMVector2TransformCoordStream(_Out_bytecap_x_(sizeof(XMFLOAT2)+OutputStride*(VectorCount-1)) XMFLOAT2* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT2)+InputStride*(VectorCount-1)) CONST XMFLOAT2* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, CXMMATRIX M); +XMVECTOR XMVector2TransformNormal(FXMVECTOR V, CXMMATRIX M); +XMFLOAT2* XMVector2TransformNormalStream(_Out_bytecap_x_(sizeof(XMFLOAT2)+OutputStride*(VectorCount-1)) XMFLOAT2* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT2)+InputStride*(VectorCount-1)) CONST XMFLOAT2* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, CXMMATRIX M); + +/**************************************************************************** + * + * 3D vector operations + * + ****************************************************************************/ + + +BOOL XMVector3Equal(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector3EqualR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector3EqualInt(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector3EqualIntR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector3NearEqual(FXMVECTOR V1, FXMVECTOR V2, FXMVECTOR Epsilon); +BOOL XMVector3NotEqual(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector3NotEqualInt(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector3Greater(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector3GreaterR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector3GreaterOrEqual(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector3GreaterOrEqualR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector3Less(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector3LessOrEqual(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector3InBounds(FXMVECTOR V, FXMVECTOR Bounds); +UINT XMVector3InBoundsR(FXMVECTOR V, FXMVECTOR Bounds); + +BOOL XMVector3IsNaN(FXMVECTOR V); +BOOL XMVector3IsInfinite(FXMVECTOR V); + +XMVECTOR XMVector3Dot(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVector3Cross(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVector3LengthSq(FXMVECTOR V); +XMVECTOR XMVector3ReciprocalLengthEst(FXMVECTOR V); +XMVECTOR XMVector3ReciprocalLength(FXMVECTOR V); +XMVECTOR XMVector3LengthEst(FXMVECTOR V); +XMVECTOR XMVector3Length(FXMVECTOR V); +XMVECTOR XMVector3NormalizeEst(FXMVECTOR V); +XMVECTOR XMVector3Normalize(FXMVECTOR V); +XMVECTOR XMVector3ClampLength(FXMVECTOR V, FLOAT LengthMin, FLOAT LengthMax); +XMVECTOR XMVector3ClampLengthV(FXMVECTOR V, FXMVECTOR LengthMin, FXMVECTOR LengthMax); +XMVECTOR XMVector3Reflect(FXMVECTOR Incident, FXMVECTOR Normal); +XMVECTOR XMVector3Refract(FXMVECTOR Incident, FXMVECTOR Normal, FLOAT RefractionIndex); +XMVECTOR XMVector3RefractV(FXMVECTOR Incident, FXMVECTOR Normal, FXMVECTOR RefractionIndex); +XMVECTOR XMVector3Orthogonal(FXMVECTOR V); +XMVECTOR XMVector3AngleBetweenNormalsEst(FXMVECTOR N1, FXMVECTOR N2); +XMVECTOR XMVector3AngleBetweenNormals(FXMVECTOR N1, FXMVECTOR N2); +XMVECTOR XMVector3AngleBetweenVectors(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVector3LinePointDistance(FXMVECTOR LinePoint1, FXMVECTOR LinePoint2, FXMVECTOR Point); +VOID XMVector3ComponentsFromNormal(_Out_ XMVECTOR* pParallel, _Out_ XMVECTOR* pPerpendicular, FXMVECTOR V, FXMVECTOR Normal); +XMVECTOR XMVector3Rotate(FXMVECTOR V, FXMVECTOR RotationQuaternion); +XMVECTOR XMVector3InverseRotate(FXMVECTOR V, FXMVECTOR RotationQuaternion); +XMVECTOR XMVector3Transform(FXMVECTOR V, CXMMATRIX M); +XMFLOAT4* XMVector3TransformStream(_Out_bytecap_x_(sizeof(XMFLOAT4)+OutputStride*(VectorCount-1)) XMFLOAT4* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT3)+InputStride*(VectorCount-1)) CONST XMFLOAT3* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, CXMMATRIX M); +XMFLOAT4* XMVector3TransformStreamNC(_Out_bytecap_x_(sizeof(XMFLOAT4)+OutputStride*(VectorCount-1)) XMFLOAT4* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT3)+InputStride*(VectorCount-1)) CONST XMFLOAT3* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, CXMMATRIX M); +XMVECTOR XMVector3TransformCoord(FXMVECTOR V, CXMMATRIX M); +XMFLOAT3* XMVector3TransformCoordStream(_Out_bytecap_x_(sizeof(XMFLOAT3)+OutputStride*(VectorCount-1)) XMFLOAT3* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT3)+InputStride*(VectorCount-1)) CONST XMFLOAT3* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, CXMMATRIX M); +XMVECTOR XMVector3TransformNormal(FXMVECTOR V, CXMMATRIX M); +XMFLOAT3* XMVector3TransformNormalStream(_Out_bytecap_x_(sizeof(XMFLOAT3)+OutputStride*(VectorCount-1)) XMFLOAT3* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT3)+InputStride*(VectorCount-1)) CONST XMFLOAT3* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, CXMMATRIX M); +XMVECTOR XMVector3Project(FXMVECTOR V, FLOAT ViewportX, FLOAT ViewportY, FLOAT ViewportWidth, FLOAT ViewportHeight, FLOAT ViewportMinZ, FLOAT ViewportMaxZ, + CXMMATRIX Projection, CXMMATRIX View, CXMMATRIX World); +XMFLOAT3* XMVector3ProjectStream(_Out_bytecap_x_(sizeof(XMFLOAT3)+OutputStride*(VectorCount-1)) XMFLOAT3* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT3)+InputStride*(VectorCount-1)) CONST XMFLOAT3* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, + FLOAT ViewportX, FLOAT ViewportY, FLOAT ViewportWidth, FLOAT ViewportHeight, FLOAT ViewportMinZ, FLOAT ViewportMaxZ, + CXMMATRIX Projection, CXMMATRIX View, CXMMATRIX World); +XMVECTOR XMVector3Unproject(FXMVECTOR V, FLOAT ViewportX, FLOAT ViewportY, FLOAT ViewportWidth, FLOAT ViewportHeight, FLOAT ViewportMinZ, FLOAT ViewportMaxZ, + CXMMATRIX Projection, CXMMATRIX View, CXMMATRIX World); +XMFLOAT3* XMVector3UnprojectStream(_Out_bytecap_x_(sizeof(XMFLOAT3)+OutputStride*(VectorCount-1)) XMFLOAT3* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT3)+InputStride*(VectorCount-1)) CONST XMFLOAT3* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, + FLOAT ViewportX, FLOAT ViewportY, FLOAT ViewportWidth, FLOAT ViewportHeight, FLOAT ViewportMinZ, FLOAT ViewportMaxZ, + CXMMATRIX Projection, CXMMATRIX View, CXMMATRIX World); + +/**************************************************************************** + * + * 4D vector operations + * + ****************************************************************************/ + +BOOL XMVector4Equal(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector4EqualR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector4EqualInt(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector4EqualIntR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector4NearEqual(FXMVECTOR V1, FXMVECTOR V2, FXMVECTOR Epsilon); +BOOL XMVector4NotEqual(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector4NotEqualInt(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector4Greater(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector4GreaterR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector4GreaterOrEqual(FXMVECTOR V1, FXMVECTOR V2); +UINT XMVector4GreaterOrEqualR(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector4Less(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector4LessOrEqual(FXMVECTOR V1, FXMVECTOR V2); +BOOL XMVector4InBounds(FXMVECTOR V, FXMVECTOR Bounds); +UINT XMVector4InBoundsR(FXMVECTOR V, FXMVECTOR Bounds); + +BOOL XMVector4IsNaN(FXMVECTOR V); +BOOL XMVector4IsInfinite(FXMVECTOR V); + +XMVECTOR XMVector4Dot(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVector4Cross(FXMVECTOR V1, FXMVECTOR V2, FXMVECTOR V3); +XMVECTOR XMVector4LengthSq(FXMVECTOR V); +XMVECTOR XMVector4ReciprocalLengthEst(FXMVECTOR V); +XMVECTOR XMVector4ReciprocalLength(FXMVECTOR V); +XMVECTOR XMVector4LengthEst(FXMVECTOR V); +XMVECTOR XMVector4Length(FXMVECTOR V); +XMVECTOR XMVector4NormalizeEst(FXMVECTOR V); +XMVECTOR XMVector4Normalize(FXMVECTOR V); +XMVECTOR XMVector4ClampLength(FXMVECTOR V, FLOAT LengthMin, FLOAT LengthMax); +XMVECTOR XMVector4ClampLengthV(FXMVECTOR V, FXMVECTOR LengthMin, FXMVECTOR LengthMax); +XMVECTOR XMVector4Reflect(FXMVECTOR Incident, FXMVECTOR Normal); +XMVECTOR XMVector4Refract(FXMVECTOR Incident, FXMVECTOR Normal, FLOAT RefractionIndex); +XMVECTOR XMVector4RefractV(FXMVECTOR Incident, FXMVECTOR Normal, FXMVECTOR RefractionIndex); +XMVECTOR XMVector4Orthogonal(FXMVECTOR V); +XMVECTOR XMVector4AngleBetweenNormalsEst(FXMVECTOR N1, FXMVECTOR N2); +XMVECTOR XMVector4AngleBetweenNormals(FXMVECTOR N1, FXMVECTOR N2); +XMVECTOR XMVector4AngleBetweenVectors(FXMVECTOR V1, FXMVECTOR V2); +XMVECTOR XMVector4Transform(FXMVECTOR V, CXMMATRIX M); +XMFLOAT4* XMVector4TransformStream(_Out_bytecap_x_(sizeof(XMFLOAT4)+OutputStride*(VectorCount-1)) XMFLOAT4* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT4)+InputStride*(VectorCount-1)) CONST XMFLOAT4* pInputStream, + _In_ size_t InputStride, _In_ size_t VectorCount, CXMMATRIX M); + +/**************************************************************************** + * + * Matrix operations + * + ****************************************************************************/ + +BOOL XMMatrixIsNaN(CXMMATRIX M); +BOOL XMMatrixIsInfinite(CXMMATRIX M); +BOOL XMMatrixIsIdentity(CXMMATRIX M); + +XMMATRIX XMMatrixMultiply(CXMMATRIX M1, CXMMATRIX M2); +XMMATRIX XMMatrixMultiplyTranspose(CXMMATRIX M1, CXMMATRIX M2); +XMMATRIX XMMatrixTranspose(CXMMATRIX M); +XMMATRIX XMMatrixInverse(_Out_opt_ XMVECTOR* pDeterminant, CXMMATRIX M); +XMVECTOR XMMatrixDeterminant(CXMMATRIX M); +BOOL XMMatrixDecompose(_Out_ XMVECTOR *outScale, _Out_ XMVECTOR *outRotQuat, _Out_ XMVECTOR *outTrans, CXMMATRIX M); + +XMMATRIX XMMatrixIdentity(); +XMMATRIX XMMatrixSet(FLOAT m00, FLOAT m01, FLOAT m02, FLOAT m03, + FLOAT m10, FLOAT m11, FLOAT m12, FLOAT m13, + FLOAT m20, FLOAT m21, FLOAT m22, FLOAT m23, + FLOAT m30, FLOAT m31, FLOAT m32, FLOAT m33); +XMMATRIX XMMatrixTranslation(FLOAT OffsetX, FLOAT OffsetY, FLOAT OffsetZ); +XMMATRIX XMMatrixTranslationFromVector(FXMVECTOR Offset); +XMMATRIX XMMatrixScaling(FLOAT ScaleX, FLOAT ScaleY, FLOAT ScaleZ); +XMMATRIX XMMatrixScalingFromVector(FXMVECTOR Scale); +XMMATRIX XMMatrixRotationX(FLOAT Angle); +XMMATRIX XMMatrixRotationY(FLOAT Angle); +XMMATRIX XMMatrixRotationZ(FLOAT Angle); +XMMATRIX XMMatrixRotationRollPitchYaw(FLOAT Pitch, FLOAT Yaw, FLOAT Roll); +XMMATRIX XMMatrixRotationRollPitchYawFromVector(FXMVECTOR Angles); +XMMATRIX XMMatrixRotationNormal(FXMVECTOR NormalAxis, FLOAT Angle); +XMMATRIX XMMatrixRotationAxis(FXMVECTOR Axis, FLOAT Angle); +XMMATRIX XMMatrixRotationQuaternion(FXMVECTOR Quaternion); +XMMATRIX XMMatrixTransformation2D(FXMVECTOR ScalingOrigin, FLOAT ScalingOrientation, FXMVECTOR Scaling, + FXMVECTOR RotationOrigin, FLOAT Rotation, CXMVECTOR Translation); +XMMATRIX XMMatrixTransformation(FXMVECTOR ScalingOrigin, FXMVECTOR ScalingOrientationQuaternion, FXMVECTOR Scaling, + CXMVECTOR RotationOrigin, CXMVECTOR RotationQuaternion, CXMVECTOR Translation); +XMMATRIX XMMatrixAffineTransformation2D(FXMVECTOR Scaling, FXMVECTOR RotationOrigin, FLOAT Rotation, FXMVECTOR Translation); +XMMATRIX XMMatrixAffineTransformation(FXMVECTOR Scaling, FXMVECTOR RotationOrigin, FXMVECTOR RotationQuaternion, CXMVECTOR Translation); +XMMATRIX XMMatrixReflect(FXMVECTOR ReflectionPlane); +XMMATRIX XMMatrixShadow(FXMVECTOR ShadowPlane, FXMVECTOR LightPosition); + +XMMATRIX XMMatrixLookAtLH(FXMVECTOR EyePosition, FXMVECTOR FocusPosition, FXMVECTOR UpDirection); +XMMATRIX XMMatrixLookAtRH(FXMVECTOR EyePosition, FXMVECTOR FocusPosition, FXMVECTOR UpDirection); +XMMATRIX XMMatrixLookToLH(FXMVECTOR EyePosition, FXMVECTOR EyeDirection, FXMVECTOR UpDirection); +XMMATRIX XMMatrixLookToRH(FXMVECTOR EyePosition, FXMVECTOR EyeDirection, FXMVECTOR UpDirection); +XMMATRIX XMMatrixPerspectiveLH(FLOAT ViewWidth, FLOAT ViewHeight, FLOAT NearZ, FLOAT FarZ); +XMMATRIX XMMatrixPerspectiveRH(FLOAT ViewWidth, FLOAT ViewHeight, FLOAT NearZ, FLOAT FarZ); +XMMATRIX XMMatrixPerspectiveFovLH(FLOAT FovAngleY, FLOAT AspectHByW, FLOAT NearZ, FLOAT FarZ); +XMMATRIX XMMatrixPerspectiveFovRH(FLOAT FovAngleY, FLOAT AspectHByW, FLOAT NearZ, FLOAT FarZ); +XMMATRIX XMMatrixPerspectiveOffCenterLH(FLOAT ViewLeft, FLOAT ViewRight, FLOAT ViewBottom, FLOAT ViewTop, FLOAT NearZ, FLOAT FarZ); +XMMATRIX XMMatrixPerspectiveOffCenterRH(FLOAT ViewLeft, FLOAT ViewRight, FLOAT ViewBottom, FLOAT ViewTop, FLOAT NearZ, FLOAT FarZ); +XMMATRIX XMMatrixOrthographicLH(FLOAT ViewWidth, FLOAT ViewHeight, FLOAT NearZ, FLOAT FarZ); +XMMATRIX XMMatrixOrthographicRH(FLOAT ViewWidth, FLOAT ViewHeight, FLOAT NearZ, FLOAT FarZ); +XMMATRIX XMMatrixOrthographicOffCenterLH(FLOAT ViewLeft, FLOAT ViewRight, FLOAT ViewBottom, FLOAT ViewTop, FLOAT NearZ, FLOAT FarZ); +XMMATRIX XMMatrixOrthographicOffCenterRH(FLOAT ViewLeft, FLOAT ViewRight, FLOAT ViewBottom, FLOAT ViewTop, FLOAT NearZ, FLOAT FarZ); + + +/**************************************************************************** + * + * Quaternion operations + * + ****************************************************************************/ + +BOOL XMQuaternionEqual(FXMVECTOR Q1, FXMVECTOR Q2); +BOOL XMQuaternionNotEqual(FXMVECTOR Q1, FXMVECTOR Q2); + +BOOL XMQuaternionIsNaN(FXMVECTOR Q); +BOOL XMQuaternionIsInfinite(FXMVECTOR Q); +BOOL XMQuaternionIsIdentity(FXMVECTOR Q); + +XMVECTOR XMQuaternionDot(FXMVECTOR Q1, FXMVECTOR Q2); +XMVECTOR XMQuaternionMultiply(FXMVECTOR Q1, FXMVECTOR Q2); +XMVECTOR XMQuaternionLengthSq(FXMVECTOR Q); +XMVECTOR XMQuaternionReciprocalLength(FXMVECTOR Q); +XMVECTOR XMQuaternionLength(FXMVECTOR Q); +XMVECTOR XMQuaternionNormalizeEst(FXMVECTOR Q); +XMVECTOR XMQuaternionNormalize(FXMVECTOR Q); +XMVECTOR XMQuaternionConjugate(FXMVECTOR Q); +XMVECTOR XMQuaternionInverse(FXMVECTOR Q); +XMVECTOR XMQuaternionLn(FXMVECTOR Q); +XMVECTOR XMQuaternionExp(FXMVECTOR Q); +XMVECTOR XMQuaternionSlerp(FXMVECTOR Q0, FXMVECTOR Q1, FLOAT t); +XMVECTOR XMQuaternionSlerpV(FXMVECTOR Q0, FXMVECTOR Q1, FXMVECTOR T); +XMVECTOR XMQuaternionSquad(FXMVECTOR Q0, FXMVECTOR Q1, FXMVECTOR Q2, CXMVECTOR Q3, FLOAT t); +XMVECTOR XMQuaternionSquadV(FXMVECTOR Q0, FXMVECTOR Q1, FXMVECTOR Q2, CXMVECTOR Q3, CXMVECTOR T); +VOID XMQuaternionSquadSetup(_Out_ XMVECTOR* pA, _Out_ XMVECTOR* pB, _Out_ XMVECTOR* pC, FXMVECTOR Q0, FXMVECTOR Q1, FXMVECTOR Q2, CXMVECTOR Q3); +XMVECTOR XMQuaternionBaryCentric(FXMVECTOR Q0, FXMVECTOR Q1, FXMVECTOR Q2, FLOAT f, FLOAT g); +XMVECTOR XMQuaternionBaryCentricV(FXMVECTOR Q0, FXMVECTOR Q1, FXMVECTOR Q2, CXMVECTOR F, CXMVECTOR G); + +XMVECTOR XMQuaternionIdentity(); +XMVECTOR XMQuaternionRotationRollPitchYaw(FLOAT Pitch, FLOAT Yaw, FLOAT Roll); +XMVECTOR XMQuaternionRotationRollPitchYawFromVector(FXMVECTOR Angles); +XMVECTOR XMQuaternionRotationNormal(FXMVECTOR NormalAxis, FLOAT Angle); +XMVECTOR XMQuaternionRotationAxis(FXMVECTOR Axis, FLOAT Angle); +XMVECTOR XMQuaternionRotationMatrix(CXMMATRIX M); + +VOID XMQuaternionToAxisAngle(_Out_ XMVECTOR* pAxis, _Out_ FLOAT* pAngle, FXMVECTOR Q); + +/**************************************************************************** + * + * Plane operations + * + ****************************************************************************/ + +BOOL XMPlaneEqual(FXMVECTOR P1, FXMVECTOR P2); +BOOL XMPlaneNearEqual(FXMVECTOR P1, FXMVECTOR P2, FXMVECTOR Epsilon); +BOOL XMPlaneNotEqual(FXMVECTOR P1, FXMVECTOR P2); + +BOOL XMPlaneIsNaN(FXMVECTOR P); +BOOL XMPlaneIsInfinite(FXMVECTOR P); + +XMVECTOR XMPlaneDot(FXMVECTOR P, FXMVECTOR V); +XMVECTOR XMPlaneDotCoord(FXMVECTOR P, FXMVECTOR V); +XMVECTOR XMPlaneDotNormal(FXMVECTOR P, FXMVECTOR V); +XMVECTOR XMPlaneNormalizeEst(FXMVECTOR P); +XMVECTOR XMPlaneNormalize(FXMVECTOR P); +XMVECTOR XMPlaneIntersectLine(FXMVECTOR P, FXMVECTOR LinePoint1, FXMVECTOR LinePoint2); +VOID XMPlaneIntersectPlane(_Out_ XMVECTOR* pLinePoint1, _Out_ XMVECTOR* pLinePoint2, FXMVECTOR P1, FXMVECTOR P2); +XMVECTOR XMPlaneTransform(FXMVECTOR P, CXMMATRIX M); +XMFLOAT4* XMPlaneTransformStream(_Out_bytecap_x_(sizeof(XMFLOAT4)+OutputStride*(PlaneCount-1)) XMFLOAT4* pOutputStream, + _In_ size_t OutputStride, + _In_bytecount_x_(sizeof(XMFLOAT4)+InputStride*(PlaneCount-1)) CONST XMFLOAT4* pInputStream, + _In_ size_t InputStride, _In_ size_t PlaneCount, CXMMATRIX M); + +XMVECTOR XMPlaneFromPointNormal(FXMVECTOR Point, FXMVECTOR Normal); +XMVECTOR XMPlaneFromPoints(FXMVECTOR Point1, FXMVECTOR Point2, FXMVECTOR Point3); + +/**************************************************************************** + * + * Color operations + * + ****************************************************************************/ + +BOOL XMColorEqual(FXMVECTOR C1, FXMVECTOR C2); +BOOL XMColorNotEqual(FXMVECTOR C1, FXMVECTOR C2); +BOOL XMColorGreater(FXMVECTOR C1, FXMVECTOR C2); +BOOL XMColorGreaterOrEqual(FXMVECTOR C1, FXMVECTOR C2); +BOOL XMColorLess(FXMVECTOR C1, FXMVECTOR C2); +BOOL XMColorLessOrEqual(FXMVECTOR C1, FXMVECTOR C2); + +BOOL XMColorIsNaN(FXMVECTOR C); +BOOL XMColorIsInfinite(FXMVECTOR C); + +XMVECTOR XMColorNegative(FXMVECTOR C); +XMVECTOR XMColorModulate(FXMVECTOR C1, FXMVECTOR C2); +XMVECTOR XMColorAdjustSaturation(FXMVECTOR C, FLOAT Saturation); +XMVECTOR XMColorAdjustContrast(FXMVECTOR C, FLOAT Contrast); + +/**************************************************************************** + * + * Miscellaneous operations + * + ****************************************************************************/ + +BOOL XMVerifyCPUSupport(); + +VOID XMAssert(_In_z_ CONST CHAR* pExpression, _In_z_ CONST CHAR* pFileName, UINT LineNumber); + +XMVECTOR XMFresnelTerm(FXMVECTOR CosIncidentAngle, FXMVECTOR RefractionIndex); + +BOOL XMScalarNearEqual(FLOAT S1, FLOAT S2, FLOAT Epsilon); +FLOAT XMScalarModAngle(FLOAT Value); +FLOAT XMScalarSin(FLOAT Value); +FLOAT XMScalarCos(FLOAT Value); +VOID XMScalarSinCos(_Out_ FLOAT* pSin, _Out_ FLOAT* pCos, FLOAT Value); +FLOAT XMScalarASin(FLOAT Value); +FLOAT XMScalarACos(FLOAT Value); +FLOAT XMScalarSinEst(FLOAT Value); +FLOAT XMScalarCosEst(FLOAT Value); +VOID XMScalarSinCosEst(_Out_ FLOAT* pSin, _Out_ FLOAT* pCos, FLOAT Value); +FLOAT XMScalarASinEst(FLOAT Value); +FLOAT XMScalarACosEst(FLOAT Value); + +/**************************************************************************** + * + * Templates + * + ****************************************************************************/ + +#if defined(__cplusplus) + +#if defined(_XM_SSE_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) + +// PermuteHelper internal template (SSE only) +namespace XNAMathInternal +{ + // Slow path fallback for permutes that do not map to a single SSE shuffle opcode. + template struct PermuteHelper + { + static XMVECTOR Permute(FXMVECTOR v1, FXMVECTOR v2) + { + static const XMVECTORU32 selectMask = + { + WhichX ? 0xFFFFFFFF : 0, + WhichY ? 0xFFFFFFFF : 0, + WhichZ ? 0xFFFFFFFF : 0, + WhichW ? 0xFFFFFFFF : 0, + }; + + XMVECTOR shuffled1 = _mm_shuffle_ps(v1, v1, Shuffle); + XMVECTOR shuffled2 = _mm_shuffle_ps(v2, v2, Shuffle); + + XMVECTOR masked1 = _mm_andnot_ps(selectMask, shuffled1); + XMVECTOR masked2 = _mm_and_ps(selectMask, shuffled2); + + return _mm_or_ps(masked1, masked2); + } + }; + + // Fast path for permutes that only read from the first vector. + template struct PermuteHelper + { + static XMVECTOR Permute(FXMVECTOR v1, FXMVECTOR v2) { (v2); return _mm_shuffle_ps(v1, v1, Shuffle); } + }; + + // Fast path for permutes that only read from the second vector. + template struct PermuteHelper + { + static XMVECTOR Permute(FXMVECTOR v1, FXMVECTOR v2){ (v1); return _mm_shuffle_ps(v2, v2, Shuffle); } + }; + + // Fast path for permutes that read XY from the first vector, ZW from the second. + template struct PermuteHelper + { + static XMVECTOR Permute(FXMVECTOR v1, FXMVECTOR v2) { return _mm_shuffle_ps(v1, v2, Shuffle); } + }; + + // Fast path for permutes that read XY from the second vector, ZW from the first. + template struct PermuteHelper + { + static XMVECTOR Permute(FXMVECTOR v1, FXMVECTOR v2) { return _mm_shuffle_ps(v2, v1, Shuffle); } + }; +}; + +#endif // _XM_SSE_INTRINSICS_ && !_XM_NO_INTRINSICS_ + +// General permute template +template + inline XMVECTOR XMVectorPermute(FXMVECTOR V1, FXMVECTOR V2) +{ +#if defined(_MSC_VER) && (_MSC_VER >= 1600) + static_assert(PermuteX <= 7, "PermuteX template parameter out of range"); + static_assert(PermuteY <= 7, "PermuteY template parameter out of range"); + static_assert(PermuteZ <= 7, "PermuteZ template parameter out of range"); + static_assert(PermuteW <= 7, "PermuteW template parameter out of range"); +#else + XMASSERT(PermuteX <= 7); + XMASSERT(PermuteY <= 7); + XMASSERT(PermuteZ <= 7); + XMASSERT(PermuteW <= 7); +#endif + +#if defined(_XM_SSE_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) + const UINT Shuffle = _MM_SHUFFLE(PermuteW & 3, PermuteZ & 3, PermuteY & 3, PermuteX & 3); + + const bool WhichX = PermuteX > 3; + const bool WhichY = PermuteY > 3; + const bool WhichZ = PermuteZ > 3; + const bool WhichW = PermuteW > 3; + + return XNAMathInternal::PermuteHelper::Permute(V1, V2); +#else + + XMVECTOR c = XMVectorPermuteControl( PermuteX, PermuteY, PermuteZ, PermuteW ); + return XMVectorPermute( V1, V2, c ); + +#endif +} + +// Special-case permute templates +template<> inline XMVECTOR XMVectorPermute<0,1,2,3>(FXMVECTOR V1, FXMVECTOR V2) { (V2); return V1; } +template<> inline XMVECTOR XMVectorPermute<4,5,6,7>(FXMVECTOR V1, FXMVECTOR V2) { (V1); return V2; } + +//------------------------------------------------------------------------------ + +// General swizzle template +template + inline XMVECTOR XMVectorSwizzle(FXMVECTOR V) +{ +#if defined(_MSC_VER) && (_MSC_VER >= 1600) + static_assert(SwizzleX <= 3, "SwizzleX template parameter out of range"); + static_assert(SwizzleY <= 3, "SwizzleY template parameter out of range"); + static_assert(SwizzleZ <= 3, "SwizzleZ template parameter out of range"); + static_assert(SwizzleW <= 3, "SwizzleW template parameter out of range"); +#else + XMASSERT(SwizzleX <= 3); + XMASSERT(SwizzleY <= 3); + XMASSERT(SwizzleZ <= 3); + XMASSERT(SwizzleW <= 3); +#endif + +#if defined(_XM_SSE_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) + return _mm_shuffle_ps( V, V, _MM_SHUFFLE( SwizzleW, SwizzleZ, SwizzleY, SwizzleX ) ); +#elif defined(_XM_VMX128_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) + return __vpermwi(V, ((SwizzleX & 3) << 6) | ((SwizzleY & 3) << 4) | ((SwizzleZ & 3) << 2) | (SwizzleW & 3) ); +#else + + return XMVectorSwizzle( V, SwizzleX, SwizzleY, SwizzleZ, SwizzleW ); + +#endif +} + +// Specialized swizzles +template<> inline XMVECTOR XMVectorSwizzle<0,1,2,3>(FXMVECTOR V) { return V; } + +//------------------------------------------------------------------------------ + +template + inline XMVECTOR XMVectorShiftLeft(FXMVECTOR V1, FXMVECTOR V2) +{ +#if defined(_MSC_VER) && (_MSC_VER >= 1600) + static_assert( Elements < 4, "Elements template parameter out of range" ); +#else + XMASSERT( Elements < 4 ); +#endif + +#if defined(_XM_VMX128_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) +#else + return XMVectorPermute(V1, V2); +#endif +} + +template + inline XMVECTOR XMVectorRotateLeft(FXMVECTOR V) +{ +#if defined(_MSC_VER) && (_MSC_VER >= 1600) + static_assert( Elements < 4, "Elements template parameter out of range" ); +#else + XMASSERT( Elements < 4 ); +#endif + +#if defined(_XM_VMX128_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) +#else + return XMVectorSwizzle(V); +#endif +} + +template + inline XMVECTOR XMVectorRotateRight(FXMVECTOR V) +{ +#if defined(_MSC_VER) && (_MSC_VER >= 1600) + static_assert( Elements < 4, "Elements template parameter out of range" ); +#else + XMASSERT( Elements < 4 ); +#endif + +#if defined(_XM_VMX128_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) +#else + return XMVectorSwizzle<(4 - Elements) & 3, (5 - Elements) & 3, (6 - Elements) & 3, (7 - Elements) & 3>(V); +#endif +} + +template + inline XMVECTOR XMVectorInsert(FXMVECTOR VD, FXMVECTOR VS) +{ +#if defined(_XM_VMX128_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_) +#else + XMVECTOR Control = XMVectorSelectControl(Select0&1, Select1&1, Select2&1, Select3&1); + return XMVectorSelect( VD, XMVectorRotateLeft(VS), Control ); +#endif +} + +#endif // __cplusplus + +/**************************************************************************** + * + * Globals + * + ****************************************************************************/ + +// The purpose of the following global constants is to prevent redundant +// reloading of the constants when they are referenced by more than one +// separate inline math routine called within the same function. Declaring +// a constant locally within a routine is sufficient to prevent redundant +// reloads of that constant when that single routine is called multiple +// times in a function, but if the constant is used (and declared) in a +// separate math routine it would be reloaded. + +#define XMGLOBALCONST extern CONST __declspec(selectany) + +XMGLOBALCONST XMVECTORF32 g_XMSinCoefficients0 = {1.0f, -0.166666667f, 8.333333333e-3f, -1.984126984e-4f}; +XMGLOBALCONST XMVECTORF32 g_XMSinCoefficients1 = {2.755731922e-6f, -2.505210839e-8f, 1.605904384e-10f, -7.647163732e-13f}; +XMGLOBALCONST XMVECTORF32 g_XMSinCoefficients2 = {2.811457254e-15f, -8.220635247e-18f, 1.957294106e-20f, -3.868170171e-23f}; +XMGLOBALCONST XMVECTORF32 g_XMCosCoefficients0 = {1.0f, -0.5f, 4.166666667e-2f, -1.388888889e-3f}; +XMGLOBALCONST XMVECTORF32 g_XMCosCoefficients1 = {2.480158730e-5f, -2.755731922e-7f, 2.087675699e-9f, -1.147074560e-11f}; +XMGLOBALCONST XMVECTORF32 g_XMCosCoefficients2 = {4.779477332e-14f, -1.561920697e-16f, 4.110317623e-19f, -8.896791392e-22f}; +XMGLOBALCONST XMVECTORF32 g_XMTanCoefficients0 = {1.0f, 0.333333333f, 0.133333333f, 5.396825397e-2f}; +XMGLOBALCONST XMVECTORF32 g_XMTanCoefficients1 = {2.186948854e-2f, 8.863235530e-3f, 3.592128167e-3f, 1.455834485e-3f}; +XMGLOBALCONST XMVECTORF32 g_XMTanCoefficients2 = {5.900274264e-4f, 2.391290764e-4f, 9.691537707e-5f, 3.927832950e-5f}; +XMGLOBALCONST XMVECTORF32 g_XMASinCoefficients0 = {-0.05806367563904f, -0.41861972469416f, 0.22480114791621f, 2.17337241360606f}; +XMGLOBALCONST XMVECTORF32 g_XMASinCoefficients1 = {0.61657275907170f, 4.29696498283455f, -1.18942822255452f, -6.53784832094831f}; +XMGLOBALCONST XMVECTORF32 g_XMASinCoefficients2 = {-1.36926553863413f, -4.48179294237210f, 1.41810672941833f, 5.48179257935713f}; +XMGLOBALCONST XMVECTORF32 g_XMATanCoefficients0 = {1.0f, 0.333333334f, 0.2f, 0.142857143f}; +XMGLOBALCONST XMVECTORF32 g_XMATanCoefficients1 = {1.111111111e-1f, 9.090909091e-2f, 7.692307692e-2f, 6.666666667e-2f}; +XMGLOBALCONST XMVECTORF32 g_XMATanCoefficients2 = {5.882352941e-2f, 5.263157895e-2f, 4.761904762e-2f, 4.347826087e-2f}; +XMGLOBALCONST XMVECTORF32 g_XMSinEstCoefficients = {1.0f, -1.66521856991541e-1f, 8.199913018755e-3f, -1.61475937228e-4f}; +XMGLOBALCONST XMVECTORF32 g_XMCosEstCoefficients = {1.0f, -4.95348008918096e-1f, 3.878259962881e-2f, -9.24587976263e-4f}; +XMGLOBALCONST XMVECTORF32 g_XMTanEstCoefficients = {2.484f, -1.954923183e-1f, 2.467401101f, XM_1DIVPI}; +XMGLOBALCONST XMVECTORF32 g_XMATanEstCoefficients = {7.689891418951e-1f, 1.104742493348f, 8.661844266006e-1f, XM_PIDIV2}; +XMGLOBALCONST XMVECTORF32 g_XMASinEstCoefficients = {-1.36178272886711f, 2.37949493464538f, -8.08228565650486e-1f, 2.78440142746736e-1f}; +XMGLOBALCONST XMVECTORF32 g_XMASinEstConstants = {1.00000011921f, XM_PIDIV2, 0.0f, 0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMPiConstants0 = {XM_PI, XM_2PI, XM_1DIVPI, XM_1DIV2PI}; +XMGLOBALCONST XMVECTORF32 g_XMIdentityR0 = {1.0f, 0.0f, 0.0f, 0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMIdentityR1 = {0.0f, 1.0f, 0.0f, 0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMIdentityR2 = {0.0f, 0.0f, 1.0f, 0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMIdentityR3 = {0.0f, 0.0f, 0.0f, 1.0f}; +XMGLOBALCONST XMVECTORF32 g_XMNegIdentityR0 = {-1.0f,0.0f, 0.0f, 0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMNegIdentityR1 = {0.0f,-1.0f, 0.0f, 0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMNegIdentityR2 = {0.0f, 0.0f,-1.0f, 0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMNegIdentityR3 = {0.0f, 0.0f, 0.0f,-1.0f}; +XMGLOBALCONST XMVECTORI32 g_XMNegativeZero = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; +XMGLOBALCONST XMVECTORI32 g_XMNegate3 = {0x80000000, 0x80000000, 0x80000000, 0x00000000}; +XMGLOBALCONST XMVECTORI32 g_XMMask3 = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000}; +XMGLOBALCONST XMVECTORI32 g_XMMaskX = {0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000}; +XMGLOBALCONST XMVECTORI32 g_XMMaskY = {0x00000000, 0xFFFFFFFF, 0x00000000, 0x00000000}; +XMGLOBALCONST XMVECTORI32 g_XMMaskZ = {0x00000000, 0x00000000, 0xFFFFFFFF, 0x00000000}; +XMGLOBALCONST XMVECTORI32 g_XMMaskW = {0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFF}; +XMGLOBALCONST XMVECTORF32 g_XMOne = { 1.0f, 1.0f, 1.0f, 1.0f}; +XMGLOBALCONST XMVECTORF32 g_XMOne3 = { 1.0f, 1.0f, 1.0f, 0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMZero = { 0.0f, 0.0f, 0.0f, 0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMNegativeOne = {-1.0f,-1.0f,-1.0f,-1.0f}; +XMGLOBALCONST XMVECTORF32 g_XMOneHalf = { 0.5f, 0.5f, 0.5f, 0.5f}; +XMGLOBALCONST XMVECTORF32 g_XMNegativeOneHalf = {-0.5f,-0.5f,-0.5f,-0.5f}; +XMGLOBALCONST XMVECTORF32 g_XMNegativeTwoPi = {-XM_2PI, -XM_2PI, -XM_2PI, -XM_2PI}; +XMGLOBALCONST XMVECTORF32 g_XMNegativePi = {-XM_PI, -XM_PI, -XM_PI, -XM_PI}; +XMGLOBALCONST XMVECTORF32 g_XMHalfPi = {XM_PIDIV2, XM_PIDIV2, XM_PIDIV2, XM_PIDIV2}; +XMGLOBALCONST XMVECTORF32 g_XMPi = {XM_PI, XM_PI, XM_PI, XM_PI}; +XMGLOBALCONST XMVECTORF32 g_XMReciprocalPi = {XM_1DIVPI, XM_1DIVPI, XM_1DIVPI, XM_1DIVPI}; +XMGLOBALCONST XMVECTORF32 g_XMTwoPi = {XM_2PI, XM_2PI, XM_2PI, XM_2PI}; +XMGLOBALCONST XMVECTORF32 g_XMReciprocalTwoPi = {XM_1DIV2PI, XM_1DIV2PI, XM_1DIV2PI, XM_1DIV2PI}; +XMGLOBALCONST XMVECTORF32 g_XMEpsilon = {1.192092896e-7f, 1.192092896e-7f, 1.192092896e-7f, 1.192092896e-7f}; +XMGLOBALCONST XMVECTORI32 g_XMInfinity = {0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000}; +XMGLOBALCONST XMVECTORI32 g_XMQNaN = {0x7FC00000, 0x7FC00000, 0x7FC00000, 0x7FC00000}; +XMGLOBALCONST XMVECTORI32 g_XMQNaNTest = {0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF}; +XMGLOBALCONST XMVECTORI32 g_XMAbsMask = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; +XMGLOBALCONST XMVECTORI32 g_XMFltMin = {0x00800000, 0x00800000, 0x00800000, 0x00800000}; +XMGLOBALCONST XMVECTORI32 g_XMFltMax = {0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF}; +XMGLOBALCONST XMVECTORI32 g_XMNegOneMask = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}; +XMGLOBALCONST XMVECTORI32 g_XMMaskA8R8G8B8 = {0x00FF0000, 0x0000FF00, 0x000000FF, 0xFF000000}; +XMGLOBALCONST XMVECTORI32 g_XMFlipA8R8G8B8 = {0x00000000, 0x00000000, 0x00000000, 0x80000000}; +XMGLOBALCONST XMVECTORF32 g_XMFixAA8R8G8B8 = {0.0f,0.0f,0.0f,(float)(0x80000000U)}; +XMGLOBALCONST XMVECTORF32 g_XMNormalizeA8R8G8B8 = {1.0f/(255.0f*(float)(0x10000)),1.0f/(255.0f*(float)(0x100)),1.0f/255.0f,1.0f/(255.0f*(float)(0x1000000))}; +XMGLOBALCONST XMVECTORI32 g_XMMaskA2B10G10R10 = {0x000003FF, 0x000FFC00, 0x3FF00000, 0xC0000000}; +XMGLOBALCONST XMVECTORI32 g_XMFlipA2B10G10R10 = {0x00000200, 0x00080000, 0x20000000, 0x80000000}; +XMGLOBALCONST XMVECTORF32 g_XMFixAA2B10G10R10 = {-512.0f,-512.0f*(float)(0x400),-512.0f*(float)(0x100000),(float)(0x80000000U)}; +XMGLOBALCONST XMVECTORF32 g_XMNormalizeA2B10G10R10 = {1.0f/511.0f,1.0f/(511.0f*(float)(0x400)),1.0f/(511.0f*(float)(0x100000)),1.0f/(3.0f*(float)(0x40000000))}; +XMGLOBALCONST XMVECTORI32 g_XMMaskX16Y16 = {0x0000FFFF, 0xFFFF0000, 0x00000000, 0x00000000}; +XMGLOBALCONST XMVECTORI32 g_XMFlipX16Y16 = {0x00008000, 0x00000000, 0x00000000, 0x00000000}; +XMGLOBALCONST XMVECTORF32 g_XMFixX16Y16 = {-32768.0f,0.0f,0.0f,0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMNormalizeX16Y16 = {1.0f/32767.0f,1.0f/(32767.0f*65536.0f),0.0f,0.0f}; +XMGLOBALCONST XMVECTORI32 g_XMMaskX16Y16Z16W16 = {0x0000FFFF, 0x0000FFFF, 0xFFFF0000, 0xFFFF0000}; +XMGLOBALCONST XMVECTORI32 g_XMFlipX16Y16Z16W16 = {0x00008000, 0x00008000, 0x00000000, 0x00000000}; +XMGLOBALCONST XMVECTORF32 g_XMFixX16Y16Z16W16 = {-32768.0f,-32768.0f,0.0f,0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMNormalizeX16Y16Z16W16 = {1.0f/32767.0f,1.0f/32767.0f,1.0f/(32767.0f*65536.0f),1.0f/(32767.0f*65536.0f)}; +XMGLOBALCONST XMVECTORF32 g_XMNoFraction = {8388608.0f,8388608.0f,8388608.0f,8388608.0f}; +XMGLOBALCONST XMVECTORI32 g_XMMaskByte = {0x000000FF, 0x000000FF, 0x000000FF, 0x000000FF}; +XMGLOBALCONST XMVECTORF32 g_XMNegateX = {-1.0f, 1.0f, 1.0f, 1.0f}; +XMGLOBALCONST XMVECTORF32 g_XMNegateY = { 1.0f,-1.0f, 1.0f, 1.0f}; +XMGLOBALCONST XMVECTORF32 g_XMNegateZ = { 1.0f, 1.0f,-1.0f, 1.0f}; +XMGLOBALCONST XMVECTORF32 g_XMNegateW = { 1.0f, 1.0f, 1.0f,-1.0f}; +XMGLOBALCONST XMVECTORI32 g_XMSelect0101 = {XM_SELECT_0, XM_SELECT_1, XM_SELECT_0, XM_SELECT_1}; +XMGLOBALCONST XMVECTORI32 g_XMSelect1010 = {XM_SELECT_1, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0}; +XMGLOBALCONST XMVECTORI32 g_XMOneHalfMinusEpsilon = { 0x3EFFFFFD, 0x3EFFFFFD, 0x3EFFFFFD, 0x3EFFFFFD}; +XMGLOBALCONST XMVECTORI32 g_XMSelect1000 = {XM_SELECT_1, XM_SELECT_0, XM_SELECT_0, XM_SELECT_0}; +XMGLOBALCONST XMVECTORI32 g_XMSelect1100 = {XM_SELECT_1, XM_SELECT_1, XM_SELECT_0, XM_SELECT_0}; +XMGLOBALCONST XMVECTORI32 g_XMSelect1110 = {XM_SELECT_1, XM_SELECT_1, XM_SELECT_1, XM_SELECT_0}; +XMGLOBALCONST XMVECTORI32 g_XMSwizzleXYXY = {XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_0X, XM_PERMUTE_0Y}; +XMGLOBALCONST XMVECTORI32 g_XMSwizzleXYZX = {XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_0Z, XM_PERMUTE_0X}; +XMGLOBALCONST XMVECTORI32 g_XMSwizzleYXZW = {XM_PERMUTE_0Y, XM_PERMUTE_0X, XM_PERMUTE_0Z, XM_PERMUTE_0W}; +XMGLOBALCONST XMVECTORI32 g_XMSwizzleYZXW = {XM_PERMUTE_0Y, XM_PERMUTE_0Z, XM_PERMUTE_0X, XM_PERMUTE_0W}; +XMGLOBALCONST XMVECTORI32 g_XMSwizzleZXYW = {XM_PERMUTE_0Z, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_0W}; +XMGLOBALCONST XMVECTORI32 g_XMPermute0X0Y1X1Y = {XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_1Y}; +XMGLOBALCONST XMVECTORI32 g_XMPermute0Z0W1Z1W = {XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_1W}; +XMGLOBALCONST XMVECTORF32 g_XMFixupY16 = {1.0f,1.0f/65536.0f,0.0f,0.0f}; +XMGLOBALCONST XMVECTORF32 g_XMFixupY16W16 = {1.0f,1.0f,1.0f/65536.0f,1.0f/65536.0f}; +XMGLOBALCONST XMVECTORI32 g_XMFlipY = {0,0x80000000,0,0}; +XMGLOBALCONST XMVECTORI32 g_XMFlipZ = {0,0,0x80000000,0}; +XMGLOBALCONST XMVECTORI32 g_XMFlipW = {0,0,0,0x80000000}; +XMGLOBALCONST XMVECTORI32 g_XMFlipYZ = {0,0x80000000,0x80000000,0}; +XMGLOBALCONST XMVECTORI32 g_XMFlipZW = {0,0,0x80000000,0x80000000}; +XMGLOBALCONST XMVECTORI32 g_XMFlipYW = {0,0x80000000,0,0x80000000}; +XMGLOBALCONST XMVECTORI32 g_XMMaskHenD3 = {0x7FF,0x7ff<<11,0x3FF<<22,0}; +XMGLOBALCONST XMVECTORI32 g_XMMaskDHen3 = {0x3FF,0x7ff<<10,0x7FF<<21,0}; +XMGLOBALCONST XMVECTORF32 g_XMAddUHenD3 = {0,0,32768.0f*65536.0f,0}; +XMGLOBALCONST XMVECTORF32 g_XMAddHenD3 = {-1024.0f,-1024.0f*2048.0f,0,0}; +XMGLOBALCONST XMVECTORF32 g_XMAddDHen3 = {-512.0f,-1024.0f*1024.0f,0,0}; +XMGLOBALCONST XMVECTORF32 g_XMMulHenD3 = {1.0f,1.0f/2048.0f,1.0f/(2048.0f*2048.0f),0}; +XMGLOBALCONST XMVECTORF32 g_XMMulDHen3 = {1.0f,1.0f/1024.0f,1.0f/(1024.0f*2048.0f),0}; +XMGLOBALCONST XMVECTORI32 g_XMXorHenD3 = {0x400,0x400<<11,0,0}; +XMGLOBALCONST XMVECTORI32 g_XMXorDHen3 = {0x200,0x400<<10,0,0}; +XMGLOBALCONST XMVECTORI32 g_XMMaskIco4 = {0xFFFFF,0xFFFFF000,0xFFFFF,0xF0000000}; +XMGLOBALCONST XMVECTORI32 g_XMXorXIco4 = {0x80000,0,0x80000,0x80000000}; +XMGLOBALCONST XMVECTORI32 g_XMXorIco4 = {0x80000,0,0x80000,0}; +XMGLOBALCONST XMVECTORF32 g_XMAddXIco4 = {-8.0f*65536.0f,0,-8.0f*65536.0f,32768.0f*65536.0f}; +XMGLOBALCONST XMVECTORF32 g_XMAddUIco4 = {0,32768.0f*65536.0f,0,32768.0f*65536.0f}; +XMGLOBALCONST XMVECTORF32 g_XMAddIco4 = {-8.0f*65536.0f,0,-8.0f*65536.0f,0}; +XMGLOBALCONST XMVECTORF32 g_XMMulIco4 = {1.0f,1.0f/4096.0f,1.0f,1.0f/(4096.0f*65536.0f)}; +XMGLOBALCONST XMVECTORI32 g_XMMaskDec4 = {0x3FF,0x3FF<<10,0x3FF<<20,0x3<<30}; +XMGLOBALCONST XMVECTORI32 g_XMXorDec4 = {0x200,0x200<<10,0x200<<20,0}; +XMGLOBALCONST XMVECTORF32 g_XMAddUDec4 = {0,0,0,32768.0f*65536.0f}; +XMGLOBALCONST XMVECTORF32 g_XMAddDec4 = {-512.0f,-512.0f*1024.0f,-512.0f*1024.0f*1024.0f,0}; +XMGLOBALCONST XMVECTORF32 g_XMMulDec4 = {1.0f,1.0f/1024.0f,1.0f/(1024.0f*1024.0f),1.0f/(1024.0f*1024.0f*1024.0f)}; +XMGLOBALCONST XMVECTORI32 g_XMMaskByte4 = {0xFF,0xFF00,0xFF0000,0xFF000000}; +XMGLOBALCONST XMVECTORI32 g_XMXorByte4 = {0x80,0x8000,0x800000,0x00000000}; +XMGLOBALCONST XMVECTORF32 g_XMAddByte4 = {-128.0f,-128.0f*256.0f,-128.0f*65536.0f,0}; +XMGLOBALCONST XMVECTORF32 g_XMFixUnsigned = {32768.0f*65536.0f,32768.0f*65536.0f,32768.0f*65536.0f,32768.0f*65536.0f}; +XMGLOBALCONST XMVECTORF32 g_XMMaxInt = {65536.0f*32768.0f-128.0f,65536.0f*32768.0f-128.0f,65536.0f*32768.0f-128.0f,65536.0f*32768.0f-128.0f}; +XMGLOBALCONST XMVECTORF32 g_XMMaxUInt = {65536.0f*65536.0f-256.0f,65536.0f*65536.0f-256.0f,65536.0f*65536.0f-256.0f,65536.0f*65536.0f-256.0f}; +XMGLOBALCONST XMVECTORF32 g_XMUnsignedFix = {32768.0f*65536.0f,32768.0f*65536.0f,32768.0f*65536.0f,32768.0f*65536.0f}; + + +/**************************************************************************** + * + * Implementation + * + ****************************************************************************/ + +#pragma warning(push) +#pragma warning(disable:4068 4214 4204 4365 4616 6001) + +#pragma prefast(push) +#pragma prefast(disable : 25000, "FXMVECTOR is 16 bytes") + +#if !defined(__cplusplus) && !defined(_XBOX) && defined(_XM_ISVS2005_) + +/* Work around VC 2005 bug where math.h defines logf with a semicolon at the end. + * Note this is fixed as of Visual Studio 2005 Service Pack 1 + */ + +#undef logf +#define logf(x) ((float)log((double)(x))) + +#endif // !defined(__cplusplus) && !defined(_XBOX) && defined(_XM_ISVS2005_) + + +//------------------------------------------------------------------------------ + +#if !defined(_XM_NO_INTRINSICS_) && defined(_XM_VMX128_INTRINSICS_) +#else + +XMFINLINE XMVECTOR XMVectorSetBinaryConstant(UINT C0, UINT C1, UINT C2, UINT C3) +{ +#if defined(_XM_NO_INTRINSICS_) + XMVECTORU32 vResult; + vResult.u[0] = (0-(C0&1)) & 0x3F800000; + vResult.u[1] = (0-(C1&1)) & 0x3F800000; + vResult.u[2] = (0-(C2&1)) & 0x3F800000; + vResult.u[3] = (0-(C3&1)) & 0x3F800000; + return vResult.v; +#else // XM_SSE_INTRINSICS_ + static const XMVECTORU32 g_vMask1 = {1,1,1,1}; + // Move the parms to a vector + __m128i vTemp = _mm_set_epi32(C3,C2,C1,C0); + // Mask off the low bits + vTemp = _mm_and_si128(vTemp,g_vMask1); + // 0xFFFFFFFF on true bits + vTemp = _mm_cmpeq_epi32(vTemp,g_vMask1); + // 0xFFFFFFFF -> 1.0f, 0x00000000 -> 0.0f + vTemp = _mm_and_si128(vTemp,g_XMOne); + return reinterpret_cast(&vTemp)[0]; +#endif +} + +//------------------------------------------------------------------------------ + +XMFINLINE XMVECTOR XMVectorSplatConstant(INT IntConstant, UINT DivExponent) +{ +#if defined(_XM_NO_INTRINSICS_) + XMASSERT( IntConstant >= -16 && IntConstant <= 15 ); + XMASSERT(DivExponent<32); + { + XMVECTORI32 V = { IntConstant, IntConstant, IntConstant, IntConstant }; + return XMConvertVectorIntToFloat( V.v, DivExponent); + } +#else // XM_SSE_INTRINSICS_ + XMASSERT( IntConstant >= -16 && IntConstant <= 15 ); + XMASSERT(DivExponent<32); + // Splat the int + __m128i vScale = _mm_set1_epi32(IntConstant); + // Convert to a float + XMVECTOR vResult = _mm_cvtepi32_ps(vScale); + // Convert DivExponent into 1.0f/(1<(&vScale)[0]); + return vResult; +#endif +} + +//------------------------------------------------------------------------------ + +XMFINLINE XMVECTOR XMVectorSplatConstantInt(INT IntConstant) +{ +#if defined(_XM_NO_INTRINSICS_) + XMASSERT( IntConstant >= -16 && IntConstant <= 15 ); + { + XMVECTORI32 V = { IntConstant, IntConstant, IntConstant, IntConstant }; + return V.v; + } +#else // XM_SSE_INTRINSICS_ + XMASSERT( IntConstant >= -16 && IntConstant <= 15 ); + __m128i V = _mm_set1_epi32( IntConstant ); + return reinterpret_cast<__m128 *>(&V)[0]; +#endif +} + +//------------------------------------------------------------------------------ + +XMFINLINE XMVECTOR XMVectorShiftLeft(FXMVECTOR V1, FXMVECTOR V2, UINT Elements) +{ + return XMVectorPermute(V1, V2, XMVectorPermuteControl((Elements), ((Elements) + 1), ((Elements) + 2), ((Elements) + 3))); +} + +//------------------------------------------------------------------------------ + +XMFINLINE XMVECTOR XMVectorRotateLeft(FXMVECTOR V, UINT Elements) +{ +#if defined(_XM_NO_INTRINSICS_) + XMASSERT( Elements < 4 ); + { + XMVECTORF32 vResult = { V.vector4_f32[Elements & 3], V.vector4_f32[(Elements + 1) & 3], + V.vector4_f32[(Elements + 2) & 3], V.vector4_f32[(Elements + 3) & 3] }; + return vResult.v; + } +#else // XM_SSE_INTRINSICS_ + FLOAT fx = XMVectorGetByIndex(V,(Elements) & 3); + FLOAT fy = XMVectorGetByIndex(V,((Elements) + 1) & 3); + FLOAT fz = XMVectorGetByIndex(V,((Elements) + 2) & 3); + FLOAT fw = XMVectorGetByIndex(V,((Elements) + 3) & 3); + return _mm_set_ps( fw, fz, fy, fx ); +#endif +} + +//------------------------------------------------------------------------------ + +XMFINLINE XMVECTOR XMVectorRotateRight(FXMVECTOR V, UINT Elements) +{ +#if defined(_XM_NO_INTRINSICS_) + XMASSERT( Elements < 4 ); + { + XMVECTORF32 vResult = { V.vector4_f32[(4 - (Elements)) & 3], V.vector4_f32[(5 - (Elements)) & 3], + V.vector4_f32[(6 - (Elements)) & 3], V.vector4_f32[(7 - (Elements)) & 3] }; + return vResult.v; + } +#else // XM_SSE_INTRINSICS_ + FLOAT fx = XMVectorGetByIndex(V,(4 - (Elements)) & 3); + FLOAT fy = XMVectorGetByIndex(V,(5 - (Elements)) & 3); + FLOAT fz = XMVectorGetByIndex(V,(6 - (Elements)) & 3); + FLOAT fw = XMVectorGetByIndex(V,(7 - (Elements)) & 3); + return _mm_set_ps( fw, fz, fy, fx ); +#endif +} + +//------------------------------------------------------------------------------ + +XMFINLINE XMVECTOR XMVectorSwizzle(FXMVECTOR V, UINT E0, UINT E1, UINT E2, UINT E3) +{ +#if defined(_XM_NO_INTRINSICS_) + XMASSERT( (E0 < 4) && (E1 < 4) && (E2 < 4) && (E3 < 4) ); + { + XMVECTORF32 vResult = { V.vector4_f32[E0], V.vector4_f32[E1], V.vector4_f32[E2], V.vector4_f32[E3] }; + return vResult.v; + } +#else // XM_SSE_INTRINSICS_ + FLOAT fx = XMVectorGetByIndex(V,E0); + FLOAT fy = XMVectorGetByIndex(V,E1); + FLOAT fz = XMVectorGetByIndex(V,E2); + FLOAT fw = XMVectorGetByIndex(V,E3); + return _mm_set_ps( fw, fz, fy, fx ); +#endif +} + +//------------------------------------------------------------------------------ + +XMFINLINE XMVECTOR XMVectorInsert(FXMVECTOR VD, FXMVECTOR VS, UINT VSLeftRotateElements, + UINT Select0, UINT Select1, UINT Select2, UINT Select3) +{ + XMVECTOR Control = XMVectorSelectControl(Select0&1, Select1&1, Select2&1, Select3&1); + return XMVectorSelect( VD, XMVectorRotateLeft(VS, VSLeftRotateElements), Control ); +} + +#endif + +//------------------------------------------------------------------------------ + +#include "xnamathconvert.inl" +#include "xnamathvector.inl" +#include "xnamathmatrix.inl" +#include "xnamathmisc.inl" + +#pragma prefast(pop) +#pragma warning(pop) + +#endif // __XNAMATH_H__ +