X-Git-Url: https://git.cworth.org/git?a=blobdiff_plain;f=thirdparty%2Flibpng%2Fpng.c;fp=thirdparty%2Flibpng%2Fpng.c;h=ca1de48664e5d39cfaeac14a6f93542320ebda99;hb=9bfd5c42713d52c320083e584eb19259f6481fa5;hp=7d09b0dbd2104d5a0f1da7090b7eb0bf9e549e9c;hpb=63d59406e8f68dcf88e630c21b08da05e82b9b80;p=apitrace diff --git a/thirdparty/libpng/png.c b/thirdparty/libpng/png.c index 7d09b0d..ca1de48 100644 --- a/thirdparty/libpng/png.c +++ b/thirdparty/libpng/png.c @@ -1,7 +1,7 @@ /* png.c - location for general purpose libpng functions * - * Last changed in libpng 1.5.1 [February 3, 2011] + * Last changed in libpng 1.5.7 [December 15, 2011] * Copyright (c) 1998-2011 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) @@ -14,7 +14,7 @@ #include "pngpriv.h" /* Generate a compiler error if there is an old png.h in the search path. */ -typedef png_libpng_version_1_5_2 Your_png_h_is_not_version_1_5_2; +typedef png_libpng_version_1_5_9 Your_png_h_is_not_version_1_5_9; /* Tells libpng that we have already handled the first "num_bytes" bytes * of the PNG file signature. If the PNG data is embedded into another @@ -43,7 +43,7 @@ png_set_sig_bytes(png_structp png_ptr, int num_bytes) * can simply check the remaining bytes for extra assurance. Returns * an integer less than, equal to, or greater than zero if sig is found, * respectively, to be less than, to match, or be greater than the correct - * PNG signature (this is the same behaviour as strcmp, memcmp, etc). + * PNG signature (this is the same behavior as strcmp, memcmp, etc). */ int PNGAPI png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check) @@ -107,7 +107,8 @@ png_zfree(voidpf png_ptr, voidpf ptr) void /* PRIVATE */ png_reset_crc(png_structp png_ptr) { - png_ptr->crc = crc32(0, Z_NULL, 0); + /* The cast is safe because the crc is a 32 bit value. */ + png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0); } /* Calculate the CRC over a section of data. We can only pass as @@ -120,21 +121,103 @@ png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length) { int need_crc = 1; - if (png_ptr->chunk_name[0] & 0x20) /* ancillary */ + if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name)) { if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) need_crc = 0; } - else /* critical */ + else /* critical */ { if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) need_crc = 0; } - if (need_crc) - png_ptr->crc = crc32(png_ptr->crc, ptr, (uInt)length); + /* 'uLong' is defined as unsigned long, this means that on some systems it is + * a 64 bit value. crc32, however, returns 32 bits so the following cast is + * safe. 'uInt' may be no more than 16 bits, so it is necessary to perform a + * loop here. + */ + if (need_crc && length > 0) + { + uLong crc = png_ptr->crc; /* Should never issue a warning */ + + do + { + uInt safeLength = (uInt)length; + if (safeLength == 0) + safeLength = (uInt)-1; /* evil, but safe */ + + crc = crc32(crc, ptr, safeLength); + + /* The following should never issue compiler warnings, if they do the + * target system has characteristics that will probably violate other + * assumptions within the libpng code. + */ + ptr += safeLength; + length -= safeLength; + } + while (length > 0); + + /* And the following is always safe because the crc is only 32 bits. */ + png_ptr->crc = (png_uint_32)crc; + } +} + +/* Check a user supplied version number, called from both read and write + * functions that create a png_struct + */ +int +png_user_version_check(png_structp png_ptr, png_const_charp user_png_ver) +{ + if (user_png_ver) + { + int i = 0; + + do + { + if (user_png_ver[i] != png_libpng_ver[i]) + png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; + } while (png_libpng_ver[i++]); + } + + else + png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; + + if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) + { + /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so + * we must recompile any applications that use any older library version. + * For versions after libpng 1.0, we will be compatible, so we need + * only check the first digit. + */ + if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] || + (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) || + (user_png_ver[0] == '0' && user_png_ver[2] < '9')) + { +#ifdef PNG_WARNINGS_SUPPORTED + size_t pos = 0; + char m[128]; + + pos = png_safecat(m, sizeof m, pos, "Application built with libpng-"); + pos = png_safecat(m, sizeof m, pos, user_png_ver); + pos = png_safecat(m, sizeof m, pos, " but running with "); + pos = png_safecat(m, sizeof m, pos, png_libpng_ver); + + png_warning(png_ptr, m); +#endif + +#ifdef PNG_ERROR_NUMBERS_SUPPORTED + png_ptr->flags = 0; +#endif + + return 0; + } + } + + /* Success return. */ + return 1; } /* Allocate the memory for an info_struct for the application. We don't @@ -291,12 +374,10 @@ png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask, /* Free any sCAL entry */ if ((mask & PNG_FREE_SCAL) & info_ptr->free_me) { -#if defined(PNG_FIXED_POINT_SUPPORTED) && !defined(PNG_FLOATING_POINT_SUPPORTED) png_free(png_ptr, info_ptr->scal_s_width); png_free(png_ptr, info_ptr->scal_s_height); info_ptr->scal_s_width = NULL; info_ptr->scal_s_height = NULL; -#endif info_ptr->valid &= ~PNG_INFO_sCAL; } #endif @@ -489,8 +570,8 @@ png_get_io_ptr(png_structp png_ptr) /* Initialize the default input/output functions for the PNG file. If you * use your own read or write routines, you can call either png_set_read_fn() * or png_set_write_fn() instead of png_init_io(). If you have defined - * PNG_NO_STDIO, you must use a function of your own because "FILE *" isn't - * necessarily available. + * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a + * function of your own because "FILE *" isn't necessarily available. */ void PNGAPI png_init_io(png_structp png_ptr, png_FILE_p fp) @@ -518,28 +599,47 @@ png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime) if (png_ptr == NULL) return (NULL); - if (png_ptr->time_buffer == NULL) + if (ptime->year > 9999 /* RFC1123 limitation */ || + ptime->month == 0 || ptime->month > 12 || + ptime->day == 0 || ptime->day > 31 || + ptime->hour > 23 || ptime->minute > 59 || + ptime->second > 60) { - png_ptr->time_buffer = (png_charp)png_malloc(png_ptr, (png_uint_32)(29* - png_sizeof(char))); + png_warning(png_ptr, "Ignoring invalid time value"); + return (NULL); } -# ifdef USE_FAR_KEYWORD { - char near_time_buf[29]; - png_snprintf6(near_time_buf, 29, "%d %s %d %02d:%02d:%02d +0000", - ptime->day % 32, short_months[(ptime->month - 1) % 12], - ptime->year, ptime->hour % 24, ptime->minute % 60, - ptime->second % 61); - png_memcpy(png_ptr->time_buffer, near_time_buf, - 29*png_sizeof(char)); + size_t pos = 0; + char number_buf[5]; /* enough for a four-digit year */ + +# define APPEND_STRING(string)\ + pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\ + pos, (string)) +# define APPEND_NUMBER(format, value)\ + APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value))) +# define APPEND(ch)\ + if (pos < (sizeof png_ptr->time_buffer)-1)\ + png_ptr->time_buffer[pos++] = (ch) + + APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day); + APPEND(' '); + APPEND_STRING(short_months[(ptime->month - 1)]); + APPEND(' '); + APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year); + APPEND(' '); + APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour); + APPEND(':'); + APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute); + APPEND(':'); + APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second); + APPEND_STRING(" +0000"); /* This reliably terminates the buffer */ + +# undef APPEND +# undef APPEND_NUMBER +# undef APPEND_STRING } -# else - png_snprintf6(png_ptr->time_buffer, 29, "%d %s %d %02d:%02d:%02d +0000", - ptime->day % 32, short_months[(ptime->month - 1) % 12], - ptime->year, ptime->hour % 24, ptime->minute % 60, - ptime->second % 61); -# endif + return png_ptr->time_buffer; } # endif /* PNG_TIME_RFC1123_SUPPORTED */ @@ -555,13 +655,13 @@ png_get_copyright(png_const_structp png_ptr) #else # ifdef __STDC__ return PNG_STRING_NEWLINE \ - "libpng version 1.5.2 - March 31, 2011" PNG_STRING_NEWLINE \ + "libpng version 1.5.9 - February 18, 2012" PNG_STRING_NEWLINE \ "Copyright (c) 1998-2011 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \ "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \ "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \ PNG_STRING_NEWLINE; # else - return "libpng version 1.5.2 - March 31, 2011\ + return "libpng version 1.5.9 - February 18, 2012\ Copyright (c) 1998-2011 Glenn Randers-Pehrson\ Copyright (c) 1996-1997 Andreas Dilger\ Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc."; @@ -608,25 +708,43 @@ png_get_header_version(png_const_structp png_ptr) #endif } -#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) -# ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED +#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED int PNGAPI png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name) { /* Check chunk_name and return "keep" value if it's on the list, else 0 */ - int i; - png_bytep p; - if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list<=0) - return 0; + png_const_bytep p, p_end; - p = png_ptr->chunk_list + png_ptr->num_chunk_list*5 - 5; - for (i = png_ptr->num_chunk_list; i; i--, p -= 5) + if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list <= 0) + return PNG_HANDLE_CHUNK_AS_DEFAULT; + + p_end = png_ptr->chunk_list; + p = p_end + png_ptr->num_chunk_list*5; /* beyond end */ + + /* The code is the fifth byte after each four byte string. Historically this + * code was always searched from the end of the list, so it should continue + * to do so in case there are duplicated entries. + */ + do /* num_chunk_list > 0, so at least one */ + { + p -= 5; if (!png_memcmp(chunk_name, p, 4)) - return ((int)*(p + 4)); - return 0; + return p[4]; + } + while (p > p_end); + + return PNG_HANDLE_CHUNK_AS_DEFAULT; } -# endif -#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ + +int /* PRIVATE */ +png_chunk_unknown_handling(png_structp png_ptr, png_uint_32 chunk_name) +{ + png_byte chunk_string[5]; + + PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name); + return png_handle_as_unknown(png_ptr, chunk_string); +} +#endif #ifdef PNG_READ_SUPPORTED /* This function, added to libpng-1.0.6g, is untested. */ @@ -651,18 +769,9 @@ png_access_version_number(void) #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) -# ifdef PNG_SIZE_T -/* Added at libpng version 1.2.6 */ - PNG_EXTERN png_size_t PNGAPI png_convert_size PNGARG((size_t size)); -png_size_t PNGAPI -png_convert_size(size_t size) -{ - if (size > (png_size_t)-1) - PNG_ABORT(); /* We haven't got access to png_ptr, so no png_error() */ - - return ((png_size_t)size); -} -# endif /* PNG_SIZE_T */ +/* png_convert_size: a PNGAPI but no longer in png.h, so deleted + * at libpng 1.5.5! + */ /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */ # ifdef PNG_CHECK_cHRM_SUPPORTED @@ -681,6 +790,13 @@ png_check_cHRM_fixed(png_structp png_ptr, if (png_ptr == NULL) return 0; + /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white + * y must also be greater than 0. To test for the upper limit calculate + * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression + * cannot overflow.) At this point we know x and y are >= 0 and (x+y) is + * <= PNG_FP_1. The previous test on PNG_MAX_UINT_31 is removed because it + * pointless (and it produces compiler warnings!) + */ if (white_x < 0 || white_y <= 0 || red_x < 0 || red_y < 0 || green_x < 0 || green_y < 0 || @@ -690,38 +806,26 @@ png_check_cHRM_fixed(png_structp png_ptr, "Ignoring attempt to set negative chromaticity value"); ret = 0; } - if (white_x > (png_fixed_point)PNG_UINT_31_MAX || - white_y > (png_fixed_point)PNG_UINT_31_MAX || - red_x > (png_fixed_point)PNG_UINT_31_MAX || - red_y > (png_fixed_point)PNG_UINT_31_MAX || - green_x > (png_fixed_point)PNG_UINT_31_MAX || - green_y > (png_fixed_point)PNG_UINT_31_MAX || - blue_x > (png_fixed_point)PNG_UINT_31_MAX || - blue_y > (png_fixed_point)PNG_UINT_31_MAX ) - { - png_warning(png_ptr, - "Ignoring attempt to set chromaticity value exceeding 21474.83"); - ret = 0; - } - if (white_x > 100000L - white_y) + /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */ + if (white_x > PNG_FP_1 - white_y) { png_warning(png_ptr, "Invalid cHRM white point"); ret = 0; } - if (red_x > 100000L - red_y) + if (red_x > PNG_FP_1 - red_y) { png_warning(png_ptr, "Invalid cHRM red point"); ret = 0; } - if (green_x > 100000L - green_y) + if (green_x > PNG_FP_1 - green_y) { png_warning(png_ptr, "Invalid cHRM green point"); ret = 0; } - if (blue_x > 100000L - blue_y) + if (blue_x > PNG_FP_1 - blue_y) { png_warning(png_ptr, "Invalid cHRM blue point"); ret = 0; @@ -741,6 +845,326 @@ png_check_cHRM_fixed(png_structp png_ptr, } # endif /* PNG_CHECK_cHRM_SUPPORTED */ +#ifdef PNG_cHRM_SUPPORTED +/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for + * cHRM, as opposed to using chromaticities. These internal APIs return + * non-zero on a parameter error. The X, Y and Z values are required to be + * positive and less than 1.0. + */ +int png_xy_from_XYZ(png_xy *xy, png_XYZ XYZ) +{ + png_int_32 d, dwhite, whiteX, whiteY; + + d = XYZ.redX + XYZ.redY + XYZ.redZ; + if (!png_muldiv(&xy->redx, XYZ.redX, PNG_FP_1, d)) return 1; + if (!png_muldiv(&xy->redy, XYZ.redY, PNG_FP_1, d)) return 1; + dwhite = d; + whiteX = XYZ.redX; + whiteY = XYZ.redY; + + d = XYZ.greenX + XYZ.greenY + XYZ.greenZ; + if (!png_muldiv(&xy->greenx, XYZ.greenX, PNG_FP_1, d)) return 1; + if (!png_muldiv(&xy->greeny, XYZ.greenY, PNG_FP_1, d)) return 1; + dwhite += d; + whiteX += XYZ.greenX; + whiteY += XYZ.greenY; + + d = XYZ.blueX + XYZ.blueY + XYZ.blueZ; + if (!png_muldiv(&xy->bluex, XYZ.blueX, PNG_FP_1, d)) return 1; + if (!png_muldiv(&xy->bluey, XYZ.blueY, PNG_FP_1, d)) return 1; + dwhite += d; + whiteX += XYZ.blueX; + whiteY += XYZ.blueY; + + /* The reference white is simply the same of the end-point (X,Y,Z) vectors, + * thus: + */ + if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1; + if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1; + + return 0; +} + +int png_XYZ_from_xy(png_XYZ *XYZ, png_xy xy) +{ + png_fixed_point red_inverse, green_inverse, blue_scale; + png_fixed_point left, right, denominator; + + /* Check xy and, implicitly, z. Note that wide gamut color spaces typically + * have end points with 0 tristimulus values (these are impossible end + * points, but they are used to cover the possible colors.) + */ + if (xy.redx < 0 || xy.redx > PNG_FP_1) return 1; + if (xy.redy < 0 || xy.redy > PNG_FP_1-xy.redx) return 1; + if (xy.greenx < 0 || xy.greenx > PNG_FP_1) return 1; + if (xy.greeny < 0 || xy.greeny > PNG_FP_1-xy.greenx) return 1; + if (xy.bluex < 0 || xy.bluex > PNG_FP_1) return 1; + if (xy.bluey < 0 || xy.bluey > PNG_FP_1-xy.bluex) return 1; + if (xy.whitex < 0 || xy.whitex > PNG_FP_1) return 1; + if (xy.whitey < 0 || xy.whitey > PNG_FP_1-xy.whitex) return 1; + + /* The reverse calculation is more difficult because the original tristimulus + * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8 + * derived values were recorded in the cHRM chunk; + * (red,green,blue,white)x(x,y). This loses one degree of freedom and + * therefore an arbitrary ninth value has to be introduced to undo the + * original transformations. + * + * Think of the original end-points as points in (X,Y,Z) space. The + * chromaticity values (c) have the property: + * + * C + * c = --------- + * X + Y + Z + * + * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the + * three chromaticity values (x,y,z) for each end-point obey the + * relationship: + * + * x + y + z = 1 + * + * This describes the plane in (X,Y,Z) space that intersects each axis at the + * value 1.0; call this the chromaticity plane. Thus the chromaticity + * calculation has scaled each end-point so that it is on the x+y+z=1 plane + * and chromaticity is the intersection of the vector from the origin to the + * (X,Y,Z) value with the chromaticity plane. + * + * To fully invert the chromaticity calculation we would need the three + * end-point scale factors, (red-scale, green-scale, blue-scale), but these + * were not recorded. Instead we calculated the reference white (X,Y,Z) and + * recorded the chromaticity of this. The reference white (X,Y,Z) would have + * given all three of the scale factors since: + * + * color-C = color-c * color-scale + * white-C = red-C + green-C + blue-C + * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale + * + * But cHRM records only white-x and white-y, so we have lost the white scale + * factor: + * + * white-C = white-c*white-scale + * + * To handle this the inverse transformation makes an arbitrary assumption + * about white-scale: + * + * Assume: white-Y = 1.0 + * Hence: white-scale = 1/white-y + * Or: red-Y + green-Y + blue-Y = 1.0 + * + * Notice the last statement of the assumption gives an equation in three of + * the nine values we want to calculate. 8 more equations come from the + * above routine as summarised at the top above (the chromaticity + * calculation): + * + * Given: color-x = color-X / (color-X + color-Y + color-Z) + * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0 + * + * This is 9 simultaneous equations in the 9 variables "color-C" and can be + * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix + * determinants, however this is not as bad as it seems because only 28 of + * the total of 90 terms in the various matrices are non-zero. Nevertheless + * Cramer's rule is notoriously numerically unstable because the determinant + * calculation involves the difference of large, but similar, numbers. It is + * difficult to be sure that the calculation is stable for real world values + * and it is certain that it becomes unstable where the end points are close + * together. + * + * So this code uses the perhaps slighly less optimal but more understandable + * and totally obvious approach of calculating color-scale. + * + * This algorithm depends on the precision in white-scale and that is + * (1/white-y), so we can immediately see that as white-y approaches 0 the + * accuracy inherent in the cHRM chunk drops off substantially. + * + * libpng arithmetic: a simple invertion of the above equations + * ------------------------------------------------------------ + * + * white_scale = 1/white-y + * white-X = white-x * white-scale + * white-Y = 1.0 + * white-Z = (1 - white-x - white-y) * white_scale + * + * white-C = red-C + green-C + blue-C + * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale + * + * This gives us three equations in (red-scale,green-scale,blue-scale) where + * all the coefficients are now known: + * + * red-x*red-scale + green-x*green-scale + blue-x*blue-scale + * = white-x/white-y + * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1 + * red-z*red-scale + green-z*green-scale + blue-z*blue-scale + * = (1 - white-x - white-y)/white-y + * + * In the last equation color-z is (1 - color-x - color-y) so we can add all + * three equations together to get an alternative third: + * + * red-scale + green-scale + blue-scale = 1/white-y = white-scale + * + * So now we have a Cramer's rule solution where the determinants are just + * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve + * multiplication of three coefficients so we can't guarantee to avoid + * overflow in the libpng fixed point representation. Using Cramer's rule in + * floating point is probably a good choice here, but it's not an option for + * fixed point. Instead proceed to simplify the first two equations by + * eliminating what is likely to be the largest value, blue-scale: + * + * blue-scale = white-scale - red-scale - green-scale + * + * Hence: + * + * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale = + * (white-x - blue-x)*white-scale + * + * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale = + * 1 - blue-y*white-scale + * + * And now we can trivially solve for (red-scale,green-scale): + * + * green-scale = + * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale + * ----------------------------------------------------------- + * green-x - blue-x + * + * red-scale = + * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale + * --------------------------------------------------------- + * red-y - blue-y + * + * Hence: + * + * red-scale = + * ( (green-x - blue-x) * (white-y - blue-y) - + * (green-y - blue-y) * (white-x - blue-x) ) / white-y + * ------------------------------------------------------------------------- + * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) + * + * green-scale = + * ( (red-y - blue-y) * (white-x - blue-x) - + * (red-x - blue-x) * (white-y - blue-y) ) / white-y + * ------------------------------------------------------------------------- + * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) + * + * Accuracy: + * The input values have 5 decimal digits of accuracy. The values are all in + * the range 0 < value < 1, so simple products are in the same range but may + * need up to 10 decimal digits to preserve the original precision and avoid + * underflow. Because we are using a 32-bit signed representation we cannot + * match this; the best is a little over 9 decimal digits, less than 10. + * + * The approach used here is to preserve the maximum precision within the + * signed representation. Because the red-scale calculation above uses the + * difference between two products of values that must be in the range -1..+1 + * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The + * factor is irrelevant in the calculation because it is applied to both + * numerator and denominator. + * + * Note that the values of the differences of the products of the + * chromaticities in the above equations tend to be small, for example for + * the sRGB chromaticities they are: + * + * red numerator: -0.04751 + * green numerator: -0.08788 + * denominator: -0.2241 (without white-y multiplication) + * + * The resultant Y coefficients from the chromaticities of some widely used + * color space definitions are (to 15 decimal places): + * + * sRGB + * 0.212639005871510 0.715168678767756 0.072192315360734 + * Kodak ProPhoto + * 0.288071128229293 0.711843217810102 0.000085653960605 + * Adobe RGB + * 0.297344975250536 0.627363566255466 0.075291458493998 + * Adobe Wide Gamut RGB + * 0.258728243040113 0.724682314948566 0.016589442011321 + */ + /* By the argument, above overflow should be impossible here. The return + * value of 2 indicates an internal error to the caller. + */ + if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.redy - xy.bluey, 7)) return 2; + if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.redx - xy.bluex, 7)) return 2; + denominator = left - right; + + /* Now find the red numerator. */ + if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2; + if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.whitex-xy.bluex, 7)) return 2; + + /* Overflow is possible here and it indicates an extreme set of PNG cHRM + * chunk values. This calculation actually returns the reciprocal of the + * scale value because this allows us to delay the multiplication of white-y + * into the denominator, which tends to produce a small number. + */ + if (!png_muldiv(&red_inverse, xy.whitey, denominator, left-right) || + red_inverse <= xy.whitey /* r+g+b scales = white scale */) + return 1; + + /* Similarly for green_inverse: */ + if (!png_muldiv(&left, xy.redy-xy.bluey, xy.whitex-xy.bluex, 7)) return 2; + if (!png_muldiv(&right, xy.redx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2; + if (!png_muldiv(&green_inverse, xy.whitey, denominator, left-right) || + green_inverse <= xy.whitey) + return 1; + + /* And the blue scale, the checks above guarantee this can't overflow but it + * can still produce 0 for extreme cHRM values. + */ + blue_scale = png_reciprocal(xy.whitey) - png_reciprocal(red_inverse) - + png_reciprocal(green_inverse); + if (blue_scale <= 0) return 1; + + + /* And fill in the png_XYZ: */ + if (!png_muldiv(&XYZ->redX, xy.redx, PNG_FP_1, red_inverse)) return 1; + if (!png_muldiv(&XYZ->redY, xy.redy, PNG_FP_1, red_inverse)) return 1; + if (!png_muldiv(&XYZ->redZ, PNG_FP_1 - xy.redx - xy.redy, PNG_FP_1, + red_inverse)) + return 1; + + if (!png_muldiv(&XYZ->greenX, xy.greenx, PNG_FP_1, green_inverse)) return 1; + if (!png_muldiv(&XYZ->greenY, xy.greeny, PNG_FP_1, green_inverse)) return 1; + if (!png_muldiv(&XYZ->greenZ, PNG_FP_1 - xy.greenx - xy.greeny, PNG_FP_1, + green_inverse)) + return 1; + + if (!png_muldiv(&XYZ->blueX, xy.bluex, blue_scale, PNG_FP_1)) return 1; + if (!png_muldiv(&XYZ->blueY, xy.bluey, blue_scale, PNG_FP_1)) return 1; + if (!png_muldiv(&XYZ->blueZ, PNG_FP_1 - xy.bluex - xy.bluey, blue_scale, + PNG_FP_1)) + return 1; + + return 0; /*success*/ +} + +int png_XYZ_from_xy_checked(png_structp png_ptr, png_XYZ *XYZ, png_xy xy) +{ + switch (png_XYZ_from_xy(XYZ, xy)) + { + case 0: /* success */ + return 1; + + case 1: + /* The chunk may be technically valid, but we got png_fixed_point + * overflow while trying to get XYZ values out of it. This is + * entirely benign - the cHRM chunk is pretty extreme. + */ + png_warning(png_ptr, + "extreme cHRM chunk cannot be converted to tristimulus values"); + break; + + default: + /* libpng is broken; this should be a warning but if it happens we + * want error reports so for the moment it is an error. + */ + png_error(png_ptr, "internal error in png_XYZ_from_xy"); + break; + } + + /* ERROR RETURN */ + return 0; +} +#endif + void /* PRIVATE */ png_check_IHDR(png_structp png_ptr, png_uint_32 width, png_uint_32 height, int bit_depth, @@ -763,7 +1187,7 @@ png_check_IHDR(png_structp png_ptr, } # ifdef PNG_SET_USER_LIMITS_SUPPORTED - if (width > png_ptr->user_width_max || width > PNG_USER_WIDTH_MAX) + if (width > png_ptr->user_width_max) # else if (width > PNG_USER_WIDTH_MAX) @@ -774,7 +1198,7 @@ png_check_IHDR(png_structp png_ptr, } # ifdef PNG_SET_USER_LIMITS_SUPPORTED - if (height > png_ptr->user_height_max || height > PNG_USER_HEIGHT_MAX) + if (height > png_ptr->user_height_max) # else if (height > PNG_USER_HEIGHT_MAX) # endif @@ -889,16 +1313,9 @@ png_check_IHDR(png_structp png_ptr, /* Check an ASCII formated floating point value, see the more detailed * comments in pngpriv.h */ -/* The following is used internally to preserve the 'valid' flag */ +/* The following is used internally to preserve the sticky flags */ #define png_fp_add(state, flags) ((state) |= (flags)) -#define png_fp_set(state, value)\ - ((state) = (value) | ((state) & PNG_FP_WAS_VALID)) - -/* Internal type codes: bits above the base state! */ -#define PNG_FP_SIGN 0 /* [+-] */ -#define PNG_FP_DOT 4 /* . */ -#define PNG_FP_DIGIT 8 /* [0123456789] */ -#define PNG_FP_E 12 /* [Ee] */ +#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY)) int /* PRIVATE */ png_check_fp_number(png_const_charp string, png_size_t size, int *statep, @@ -911,55 +1328,55 @@ png_check_fp_number(png_const_charp string, png_size_t size, int *statep, { int type; /* First find the type of the next character */ + switch (string[i]) { - char ch = string[i]; - - if (ch >= 48 && ch <= 57) - type = PNG_FP_DIGIT; - - else switch (ch) - { - case 43: case 45: type = PNG_FP_SIGN; break; - case 46: type = PNG_FP_DOT; break; - case 69: case 101: type = PNG_FP_E; break; - default: goto PNG_FP_End; - } + case 43: type = PNG_FP_SAW_SIGN; break; + case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break; + case 46: type = PNG_FP_SAW_DOT; break; + case 48: type = PNG_FP_SAW_DIGIT; break; + case 49: case 50: case 51: case 52: + case 53: case 54: case 55: case 56: + case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break; + case 69: + case 101: type = PNG_FP_SAW_E; break; + default: goto PNG_FP_End; } /* Now deal with this type according to the current * state, the type is arranged to not overlap the * bits of the PNG_FP_STATE. */ - switch ((state & PNG_FP_STATE) + type) + switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY)) { - case PNG_FP_INTEGER + PNG_FP_SIGN: + case PNG_FP_INTEGER + PNG_FP_SAW_SIGN: if (state & PNG_FP_SAW_ANY) goto PNG_FP_End; /* not a part of the number */ - png_fp_add(state, PNG_FP_SAW_SIGN); + png_fp_add(state, type); break; - case PNG_FP_INTEGER + PNG_FP_DOT: + case PNG_FP_INTEGER + PNG_FP_SAW_DOT: /* Ok as trailer, ok as lead of fraction. */ if (state & PNG_FP_SAW_DOT) /* two dots */ goto PNG_FP_End; else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */ - png_fp_add(state, PNG_FP_SAW_DOT); + png_fp_add(state, type); else - png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT); + png_fp_set(state, PNG_FP_FRACTION | type); break; - case PNG_FP_INTEGER + PNG_FP_DIGIT: + case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT: if (state & PNG_FP_SAW_DOT) /* delayed fraction */ png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT); - png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID); + png_fp_add(state, type | PNG_FP_WAS_VALID); break; - case PNG_FP_INTEGER + PNG_FP_E: + + case PNG_FP_INTEGER + PNG_FP_SAW_E: if ((state & PNG_FP_SAW_DIGIT) == 0) goto PNG_FP_End; @@ -967,17 +1384,17 @@ png_check_fp_number(png_const_charp string, png_size_t size, int *statep, break; - /* case PNG_FP_FRACTION + PNG_FP_SIGN: - goto PNG_FP_End; ** no sign in exponent */ + /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN: + goto PNG_FP_End; ** no sign in fraction */ - /* case PNG_FP_FRACTION + PNG_FP_DOT: + /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT: goto PNG_FP_End; ** Because SAW_DOT is always set */ - case PNG_FP_FRACTION + PNG_FP_DIGIT: - png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID); + case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT: + png_fp_add(state, type | PNG_FP_WAS_VALID); break; - case PNG_FP_FRACTION + PNG_FP_E: + case PNG_FP_FRACTION + PNG_FP_SAW_E: /* This is correct because the trailing '.' on an * integer is handled above - so we can only get here * with the sequence ".E" (with no preceding digits). @@ -989,7 +1406,7 @@ png_check_fp_number(png_const_charp string, png_size_t size, int *statep, break; - case PNG_FP_EXPONENT + PNG_FP_SIGN: + case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN: if (state & PNG_FP_SAW_ANY) goto PNG_FP_End; /* not a part of the number */ @@ -997,15 +1414,15 @@ png_check_fp_number(png_const_charp string, png_size_t size, int *statep, break; - /* case PNG_FP_EXPONENT + PNG_FP_DOT: + /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT: goto PNG_FP_End; */ - case PNG_FP_EXPONENT + PNG_FP_DIGIT: - png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID); + case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT: + png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID); break; - /* case PNG_FP_EXPONEXT + PNG_FP_E: + /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E: goto PNG_FP_End; */ default: goto PNG_FP_End; /* I.e. break 2 */ @@ -1033,8 +1450,11 @@ png_check_fp_string(png_const_charp string, png_size_t size) int state=0; png_size_t char_index=0; - return png_check_fp_number(string, size, &state, &char_index) && - (char_index == size || string[char_index] == 0); + if (png_check_fp_number(string, size, &state, &char_index) && + (char_index == size || string[char_index] == 0)) + return state /* must be non-zero - see above */; + + return 0; /* i.e. fail */ } #endif /* pCAL or sCAL */ @@ -1102,7 +1522,7 @@ png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size, if (fp < 0) { fp = -fp; - *ascii++ = 45; /* '-' PLUS 1 TOTAL 1*/ + *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */ --size; } @@ -1329,19 +1749,31 @@ png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size, */ size -= cdigits; - *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision*/ - if (exp_b10 < 0) + *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */ + + /* The following use of an unsigned temporary avoids ambiguities in + * the signed arithmetic on exp_b10 and permits GCC at least to do + * better optimization. + */ { - *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */ - exp_b10 = -exp_b10; - } + unsigned int uexp_b10; + + if (exp_b10 < 0) + { + *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */ + uexp_b10 = -exp_b10; + } + + else + uexp_b10 = exp_b10; - cdigits = 0; + cdigits = 0; - while (exp_b10 > 0) - { - exponent[cdigits++] = (char)(48 + exp_b10 % 10); - exp_b10 /= 10; + while (uexp_b10 > 0) + { + exponent[cdigits++] = (char)(48 + uexp_b10 % 10); + uexp_b10 /= 10; + } } /* Need another size check here for the exponent digits, so @@ -1399,9 +1831,9 @@ png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size, else num = fp; - if (num <= 0x80000000U) /* else overflowed */ + if (num <= 0x80000000) /* else overflowed */ { - unsigned int ndigits = 0, first = 16/*flag value*/; + unsigned int ndigits = 0, first = 16 /* flag value */; char digits[10]; while (num) @@ -1495,7 +1927,7 @@ png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, r /= divisor; r = floor(r+.5); - /* A png_fixed_point is a 32 bit integer. */ + /* A png_fixed_point is a 32-bit integer. */ if (r <= 2147483647. && r >= -2147483648.) { *res = (png_fixed_point)r; @@ -1540,7 +1972,7 @@ png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, if (s32 < D) /* else overflow */ { - /* s32.s00 is now the 64 bit product, do a standard + /* s32.s00 is now the 64-bit product, do a standard * division, we know that s32 < D, so the maximum * required shift is 31. */ @@ -1683,7 +2115,7 @@ png_reciprocal2(png_fixed_point a, png_fixed_point b) * 2010: moved from pngset.c) */ /* * Multiply two 32-bit numbers, V1 and V2, using 32-bit - * arithmetic, to produce a 64 bit result in the HI/LO words. + * arithmetic, to produce a 64-bit result in the HI/LO words. * * A B * x C D @@ -1727,24 +2159,24 @@ png_64bit_product (long v1, long v2, unsigned long *hi_product, /* Fixed point gamma. * * To calculate gamma this code implements fast log() and exp() calls using only - * fixed point arithmetic. This code has sufficient precision for either 8 or - * 16 bit sample values. + * fixed point arithmetic. This code has sufficient precision for either 8-bit + * or 16-bit sample values. * * The tables used here were calculated using simple 'bc' programs, but C double * precision floating point arithmetic would work fine. The programs are given * at the head of each table. * - * 8 bit log table + * 8-bit log table * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to - * 255, so it's the base 2 logarithm of a normalized 8 bit floating point - * mantissa. The numbers are 32 bit fractions. + * 255, so it's the base 2 logarithm of a normalized 8-bit floating point + * mantissa. The numbers are 32-bit fractions. */ static png_uint_32 png_8bit_l2[128] = { -# if PNG_DO_BC +# ifdef PNG_DO_BC for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; } -# endif +# else 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U, 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U, 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U, @@ -1767,11 +2199,13 @@ png_8bit_l2[128] = 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U, 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U, 24347096U, 0U +# endif + #if 0 - /* The following are the values for 16 bit tables - these work fine for the 8 - * bit conversions but produce very slightly larger errors in the 16 bit log - * (about 1.2 as opposed to 0.7 absolute error in the final value). To use - * these all the shifts below must be adjusted appropriately. + /* The following are the values for 16-bit tables - these work fine for the + * 8-bit conversions but produce very slightly larger errors in the 16-bit + * log (about 1.2 as opposed to 0.7 absolute error in the final value). To + * use these all the shifts below must be adjusted appropriately. */ 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054, 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803, @@ -1788,7 +2222,7 @@ png_8bit_l2[128] = #endif }; -static png_int_32 +PNG_STATIC png_int_32 png_log8bit(unsigned int x) { unsigned int lg2 = 0; @@ -1814,11 +2248,11 @@ png_log8bit(unsigned int x) return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16)); } -/* The above gives exact (to 16 binary places) log2 values for 8 bit images, - * for 16 bit images we use the most significant 8 bits of the 16 bit value to +/* The above gives exact (to 16 binary places) log2 values for 8-bit images, + * for 16-bit images we use the most significant 8 bits of the 16-bit value to * get an approximation then multiply the approximation by a correction factor * determined by the remaining up to 8 bits. This requires an additional step - * in the 16 bit case. + * in the 16-bit case. * * We want log2(value/65535), we have log2(v'/255), where: * @@ -1827,8 +2261,8 @@ png_log8bit(unsigned int x) * * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less - * than 258. The final factor also needs to correct for the fact that our 8 bit - * value is scaled by 255, whereas the 16 bit values must be scaled by 65535. + * than 258. The final factor also needs to correct for the fact that our 8-bit + * value is scaled by 255, whereas the 16-bit values must be scaled by 65535. * * This gives a final formula using a calculated value 'x' which is value/v' and * scaling by 65536 to match the above table: @@ -1838,13 +2272,13 @@ png_log8bit(unsigned int x) * Since these numbers are so close to '1' we can use simple linear * interpolation between the two end values 256/257 (result -368.61) and 258/257 * (result 367.179). The values used below are scaled by a further 64 to give - * 16 bit precision in the interpolation: + * 16-bit precision in the interpolation: * * Start (256): -23591 * Zero (257): 0 * End (258): 23499 */ -static png_int_32 +PNG_STATIC png_int_32 png_log16bit(png_uint_32 x) { unsigned int lg2 = 0; @@ -1865,7 +2299,7 @@ png_log16bit(png_uint_32 x) if ((x & 0x8000) == 0) lg2 += 1, x <<= 1; - /* Calculate the base logarithm from the top 8 bits as a 28 bit fractional + /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional * value. */ lg2 <<= 28; @@ -1895,34 +2329,35 @@ png_log16bit(png_uint_32 x) return (png_int_32)((lg2 + 2048) >> 12); } -/* The 'exp()' case must invert the above, taking a 20 bit fixed point - * logarithmic value and returning a 16 or 8 bit number as appropriate. In +/* The 'exp()' case must invert the above, taking a 20-bit fixed point + * logarithmic value and returning a 16 or 8-bit number as appropriate. In * each case only the low 16 bits are relevant - the fraction - since the * integer bits (the top 4) simply determine a shift. * - * The worst case is the 16 bit distinction between 65535 and 65534, this - * requires perhaps spurious accuracty in the decoding of the logarithm to + * The worst case is the 16-bit distinction between 65535 and 65534, this + * requires perhaps spurious accuracy in the decoding of the logarithm to * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance * of getting this accuracy in practice. * * To deal with this the following exp() function works out the exponent of the - * frational part of the logarithm by using an accurate 32 bit value from the + * frational part of the logarithm by using an accurate 32-bit value from the * top four fractional bits then multiplying in the remaining bits. */ static png_uint_32 png_32bit_exp[16] = { -# if PNG_DO_BC +# ifdef PNG_DO_BC for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; } -# endif - /* NOTE: the first entry is deliberately set to the maximum 32 bit value. */ +# else + /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */ 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U, 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U, 2553802834U, 2445529972U, 2341847524U, 2242560872U +# endif }; /* Adjustment table; provided to explain the numbers in the code below. */ -#if PNG_DO_BC +#ifdef PNG_DO_BC for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"} 11 44937.64284865548751208448 10 45180.98734845585101160448 @@ -1938,12 +2373,12 @@ for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"} 0 45425.85339951654943850496 #endif -static png_uint_32 +PNG_STATIC png_uint_32 png_exp(png_fixed_point x) { if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */ { - /* Obtain a 4 bit approximation */ + /* Obtain a 4-bit approximation */ png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf]; /* Incorporate the low 12 bits - these decrease the returned value by @@ -1986,13 +2421,13 @@ png_exp(png_fixed_point x) return 0; } -static png_byte +PNG_STATIC png_byte png_exp8bit(png_fixed_point lg2) { - /* Get a 32 bit value: */ + /* Get a 32-bit value: */ png_uint_32 x = png_exp(lg2); - /* Convert the 32 bit value to 0..255 by multiplying by 256-1, note that the + /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the * second, rounding, step can't overflow because of the first, subtraction, * step. */ @@ -2000,13 +2435,13 @@ png_exp8bit(png_fixed_point lg2) return (png_byte)((x + 0x7fffffU) >> 24); } -static png_uint_16 +PNG_STATIC png_uint_16 png_exp16bit(png_fixed_point lg2) { - /* Get a 32 bit value: */ + /* Get a 32-bit value: */ png_uint_32 x = png_exp(lg2); - /* Convert the 32 bit value to 0..65535 by multiplying by 65536-1: */ + /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */ x -= x >> 16; return (png_uint_16)((x + 32767U) >> 16); } @@ -2059,9 +2494,9 @@ png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val) } /* This does the right thing based on the bit_depth field of the - * png_struct, interpreting values as 8 or 16 bit. While the result - * is nominally a 16 bit value if bit depth is 8 then the result is - * 8 bit (as are the arguments.) + * png_struct, interpreting values as 8-bit or 16-bit. While the result + * is nominally a 16-bit value if bit depth is 8 then the result is + * 8-bit (as are the arguments.) */ png_uint_16 /* PRIVATE */ png_gamma_correct(png_structp png_ptr, unsigned int value, @@ -2084,8 +2519,8 @@ png_gamma_significant(png_fixed_point gamma_val) gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED; } -/* Internal function to build a single 16 bit table - the table consists of - * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount +/* Internal function to build a single 16-bit table - the table consists of + * 'num' 256-entry subtables, where 'num' is determined by 'shift' - the amount * to shift the input values right (or 16-number_of_signifiant_bits). * * The caller is responsible for ensuring that the table gets cleaned up on @@ -2111,7 +2546,7 @@ png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable, (png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16)); /* The 'threshold' test is repeated here because it can arise for one of - * the 16 bit tables even if the others don't hit it. + * the 16-bit tables even if the others don't hit it. */ if (png_gamma_significant(gamma_val)) { @@ -2172,9 +2607,9 @@ png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable, png_uint_16pp table = *ptable = (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p)); - /* 'num' is the number of tables and also the number of low bits of low - * bits of the input 16 bit value used to select a table. Each table is - * itself index by the high 8 bits of the value. + /* 'num' is the number of tables and also the number of low bits of the + * input 16-bit value used to select a table. Each table is itself indexed + * by the high 8 bits of the value. */ for (i = 0; i < num; i++) table[i] = (png_uint_16p)png_malloc(png_ptr, @@ -2183,24 +2618,24 @@ png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable, /* 'gamma_val' is set to the reciprocal of the value calculated above, so * pow(out,g) is an *input* value. 'last' is the last input value set. * - * In the loop 'i' is used to find output values. Since the output is 8 - * bit there are only 256 possible values. The tables are set up to + * In the loop 'i' is used to find output values. Since the output is + * 8-bit there are only 256 possible values. The tables are set up to * select the closest possible output value for each input by finding * the input value at the boundary between each pair of output values * and filling the table up to that boundary with the lower output * value. * - * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9 bit - * values the code below uses a 16 bit value in i; the values start at + * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit + * values the code below uses a 16-bit value in i; the values start at * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last * entries are filled with 255). Start i at 128 and fill all 'last' * table entries <= 'max' */ last = 0; - for (i = 0; i < 255; ++i) /* 8 bit output value */ + for (i = 0; i < 255; ++i) /* 8-bit output value */ { /* Find the corresponding maximum input value */ - png_uint_16 out = (png_uint_16)(i * 257U); /* 16 bit output value */ + png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */ /* Find the boundary value in 16 bits: */ png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val); @@ -2223,9 +2658,9 @@ png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable, } } -/* Build a single 8 bit table: same as the 16 bit case but much simpler (and +/* Build a single 8-bit table: same as the 16-bit case but much simpler (and * typically much faster). Note that libpng currently does no sBIT processing - * (apparently contrary to the spec) so a 256 entry table is always generated. + * (apparently contrary to the spec) so a 256-entry table is always generated. */ static void png_build_8bit_table(png_structp png_ptr, png_bytepp ptable, @@ -2241,6 +2676,60 @@ png_build_8bit_table(png_structp png_ptr, png_bytepp ptable, table[i] = (png_byte)i; } +/* Used from png_read_destroy and below to release the memory used by the gamma + * tables. + */ +void /* PRIVATE */ +png_destroy_gamma_table(png_structp png_ptr) +{ + png_free(png_ptr, png_ptr->gamma_table); + png_ptr->gamma_table = NULL; + + if (png_ptr->gamma_16_table != NULL) + { + int i; + int istop = (1 << (8 - png_ptr->gamma_shift)); + for (i = 0; i < istop; i++) + { + png_free(png_ptr, png_ptr->gamma_16_table[i]); + } + png_free(png_ptr, png_ptr->gamma_16_table); + png_ptr->gamma_16_table = NULL; + } + +#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ + defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ + defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) + png_free(png_ptr, png_ptr->gamma_from_1); + png_ptr->gamma_from_1 = NULL; + png_free(png_ptr, png_ptr->gamma_to_1); + png_ptr->gamma_to_1 = NULL; + + if (png_ptr->gamma_16_from_1 != NULL) + { + int i; + int istop = (1 << (8 - png_ptr->gamma_shift)); + for (i = 0; i < istop; i++) + { + png_free(png_ptr, png_ptr->gamma_16_from_1[i]); + } + png_free(png_ptr, png_ptr->gamma_16_from_1); + png_ptr->gamma_16_from_1 = NULL; + } + if (png_ptr->gamma_16_to_1 != NULL) + { + int i; + int istop = (1 << (8 - png_ptr->gamma_shift)); + for (i = 0; i < istop; i++) + { + png_free(png_ptr, png_ptr->gamma_16_to_1[i]); + } + png_free(png_ptr, png_ptr->gamma_16_to_1); + png_ptr->gamma_16_to_1 = NULL; + } +#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ +} + /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit * tables, we don't make a full table if we are reducing to 8-bit in * the future. Note also how the gamma_16 tables are segmented so that @@ -2251,6 +2740,18 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth) { png_debug(1, "in png_build_gamma_table"); + /* Remove any existing table; this copes with multiple calls to + * png_read_update_info. The warning is because building the gamma tables + * multiple times is a performance hit - it's harmless but the ability to call + * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible + * to warn if the app introduces such a hit. + */ + if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL) + { + png_warning(png_ptr, "gamma table being rebuilt"); + png_destroy_gamma_table(png_ptr); + } + if (bit_depth <= 8) { png_build_8bit_table(png_ptr, &png_ptr->gamma_table, @@ -2258,8 +2759,9 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth) png_ptr->screen_gamma) : PNG_FP_1); #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ + defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) - if (png_ptr->transformations & ((PNG_BACKGROUND) | PNG_RGB_TO_GRAY)) + if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) { png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, png_reciprocal(png_ptr->gamma)); @@ -2268,7 +2770,7 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth) png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : png_ptr->gamma/* Probably doing rgb_to_gray */); } -#endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */ +#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ } else { @@ -2287,14 +2789,14 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth) else sig_bit = png_ptr->sig_bit.gray; - /* 16 bit gamma code uses this equation: + /* 16-bit gamma code uses this equation: * * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8] * * Where 'iv' is the input color value and 'ov' is the output value - * pow(iv, gamma). * - * Thus the gamma table consists of up to 256 256 entry tables. The table + * Thus the gamma table consists of up to 256 256-entry tables. The table * is selected by the (8-gamma_shift) most significant of the low 8 bits of * the color value then indexed by the upper 8 bits: * @@ -2302,7 +2804,7 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth) * * So the table 'n' corresponds to all those 'iv' of: * - * ..<(n+1 << gamma_shift)-1> + * ..<(n+1 << gamma_shift)-1> * */ if (sig_bit > 0 && sig_bit < 16U) @@ -2311,7 +2813,7 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth) else shift = 0; /* keep all 16 bits */ - if (png_ptr->transformations & PNG_16_TO_8) + if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) { /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively * the significant bits in the *input* when the output will @@ -2327,7 +2829,12 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth) png_ptr->gamma_shift = shift; #ifdef PNG_16BIT_SUPPORTED - if (png_ptr->transformations & (PNG_16_TO_8 | PNG_BACKGROUND)) + /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now + * PNG_COMPOSE). This effectively smashed the background calculation for + * 16-bit output because the 8-bit table assumes the result will be reduced + * to 8 bits. + */ + if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) #endif png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift, png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma, @@ -2341,8 +2848,9 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth) #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ + defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) - if (png_ptr->transformations & (PNG_BACKGROUND | PNG_RGB_TO_GRAY)) + if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) { png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift, png_reciprocal(png_ptr->gamma)); @@ -2355,7 +2863,7 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth) png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : png_ptr->gamma/* Probably doing rgb_to_gray */); } -#endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */ +#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ } } #endif /* READ_GAMMA */