]> git.cworth.org Git - apitrace/blobdiff - thirdparty/directxtex/XNAMath/xnamathvector.inl
thirdparty/directxtex: Import DirectXTex library.
[apitrace] / thirdparty / directxtex / XNAMath / xnamathvector.inl
diff --git a/thirdparty/directxtex/XNAMath/xnamathvector.inl b/thirdparty/directxtex/XNAMath/xnamathvector.inl
new file mode 100644 (file)
index 0000000..37b7d13
--- /dev/null
@@ -0,0 +1,13673 @@
+/************************************************************************
+*                                                                       *
+* xnamathvector.inl -- SIMD C++ Math library for Windows and Xbox 360   *
+*                      Vector functions                                 *
+*                                                                       *
+* Copyright (c) Microsoft Corp. All rights reserved.                    *
+*                                                                       *
+************************************************************************/
+
+#if defined(_MSC_VER) && (_MSC_VER > 1000)
+#pragma once
+#endif
+
+#ifndef __XNAMATHVECTOR_INL__
+#define __XNAMATHVECTOR_INL__
+
+#if defined(_XM_NO_INTRINSICS_)
+#define XMISNAN(x)  ((*(UINT*)&(x) & 0x7F800000) == 0x7F800000 && (*(UINT*)&(x) & 0x7FFFFF) != 0)
+#define XMISINF(x)  ((*(UINT*)&(x) & 0x7FFFFFFF) == 0x7F800000)
+#endif
+
+/****************************************************************************
+ *
+ * General Vector
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+// Assignment operations
+//------------------------------------------------------------------------------
+
+//------------------------------------------------------------------------------
+// Return a vector with all elements equaling zero
+XMFINLINE XMVECTOR XMVectorZero()
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult = {0.0f,0.0f,0.0f,0.0f};
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_setzero_ps();
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Initialize a vector with four floating point values
+XMFINLINE XMVECTOR XMVectorSet
+(
+    FLOAT x, 
+    FLOAT y, 
+    FLOAT z, 
+    FLOAT w
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTORF32 vResult = {x,y,z,w};
+    return vResult.v;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_set_ps( w, z, y, x );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Initialize a vector with four integer values
+XMFINLINE XMVECTOR XMVectorSetInt
+(
+    UINT x, 
+    UINT y, 
+    UINT z, 
+    UINT w
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTORU32 vResult = {x,y,z,w};
+    return vResult.v;
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i V = _mm_set_epi32( w, z, y, x );
+    return reinterpret_cast<__m128 *>(&V)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Initialize a vector with a replicated floating point value
+XMFINLINE XMVECTOR XMVectorReplicate
+(
+    FLOAT Value
+)
+{
+#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+    XMVECTORF32 vResult = {Value,Value,Value,Value};
+    return vResult.v;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_set_ps1( Value );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Initialize a vector with a replicated floating point value passed by pointer
+XMFINLINE XMVECTOR XMVectorReplicatePtr
+(
+    CONST FLOAT *pValue
+)
+{
+#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+    FLOAT Value = pValue[0];
+    XMVECTORF32 vResult = {Value,Value,Value,Value};
+    return vResult.v;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_load_ps1( pValue );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Initialize a vector with a replicated integer value
+XMFINLINE XMVECTOR XMVectorReplicateInt
+(
+    UINT Value
+)
+{
+#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+    XMVECTORU32 vResult = {Value,Value,Value,Value};
+    return vResult.v;
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vTemp = _mm_set1_epi32( Value );
+    return reinterpret_cast<const __m128 *>(&vTemp)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Initialize a vector with a replicated integer value passed by pointer
+XMFINLINE XMVECTOR XMVectorReplicateIntPtr
+(
+    CONST UINT *pValue
+)
+{
+#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+    UINT Value = pValue[0];
+    XMVECTORU32 vResult = {Value,Value,Value,Value};
+    return vResult.v;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_load_ps1(reinterpret_cast<const float *>(pValue));
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Initialize a vector with all bits set (true mask)
+XMFINLINE XMVECTOR XMVectorTrueInt()
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTORU32 vResult = {0xFFFFFFFFU,0xFFFFFFFFU,0xFFFFFFFFU,0xFFFFFFFFU};
+    return vResult.v;
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i V = _mm_set1_epi32(-1);
+    return reinterpret_cast<__m128 *>(&V)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Initialize a vector with all bits clear (false mask)
+XMFINLINE XMVECTOR XMVectorFalseInt()
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult = {0.0f,0.0f,0.0f,0.0f};
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_setzero_ps();
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Replicate the x component of the vector
+XMFINLINE XMVECTOR XMVectorSplatX
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult;
+    vResult.vector4_f32[0] = 
+    vResult.vector4_f32[1] = 
+    vResult.vector4_f32[2] = 
+    vResult.vector4_f32[3] = V.vector4_f32[0];
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_shuffle_ps( V, V, _MM_SHUFFLE(0, 0, 0, 0) );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Replicate the y component of the vector
+XMFINLINE XMVECTOR XMVectorSplatY
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult;
+    vResult.vector4_f32[0] = 
+    vResult.vector4_f32[1] = 
+    vResult.vector4_f32[2] = 
+    vResult.vector4_f32[3] = V.vector4_f32[1];
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_shuffle_ps( V, V, _MM_SHUFFLE(1, 1, 1, 1) );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Replicate the z component of the vector
+XMFINLINE XMVECTOR XMVectorSplatZ
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult;
+    vResult.vector4_f32[0] = 
+    vResult.vector4_f32[1] = 
+    vResult.vector4_f32[2] = 
+    vResult.vector4_f32[3] = V.vector4_f32[2];
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_shuffle_ps( V, V, _MM_SHUFFLE(2, 2, 2, 2) );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Replicate the w component of the vector
+XMFINLINE XMVECTOR XMVectorSplatW
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult;
+    vResult.vector4_f32[0] = 
+    vResult.vector4_f32[1] = 
+    vResult.vector4_f32[2] = 
+    vResult.vector4_f32[3] = V.vector4_f32[3];
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_shuffle_ps( V, V, _MM_SHUFFLE(3, 3, 3, 3) );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Return a vector of 1.0f,1.0f,1.0f,1.0f
+XMFINLINE XMVECTOR XMVectorSplatOne()
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult;
+    vResult.vector4_f32[0] = 
+    vResult.vector4_f32[1] = 
+    vResult.vector4_f32[2] = 
+    vResult.vector4_f32[3] = 1.0f;
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return g_XMOne;
+#else //  _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Return a vector of INF,INF,INF,INF
+XMFINLINE XMVECTOR XMVectorSplatInfinity()
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult;
+    vResult.vector4_u32[0] = 
+    vResult.vector4_u32[1] = 
+    vResult.vector4_u32[2] = 
+    vResult.vector4_u32[3] = 0x7F800000;
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return g_XMInfinity;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Return a vector of Q_NAN,Q_NAN,Q_NAN,Q_NAN
+XMFINLINE XMVECTOR XMVectorSplatQNaN()
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult;
+    vResult.vector4_u32[0] = 
+    vResult.vector4_u32[1] = 
+    vResult.vector4_u32[2] = 
+    vResult.vector4_u32[3] = 0x7FC00000;
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return g_XMQNaN;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Return a vector of 1.192092896e-7f,1.192092896e-7f,1.192092896e-7f,1.192092896e-7f
+XMFINLINE XMVECTOR XMVectorSplatEpsilon()
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult;
+    vResult.vector4_u32[0] = 
+    vResult.vector4_u32[1] = 
+    vResult.vector4_u32[2] = 
+    vResult.vector4_u32[3] = 0x34000000;
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return g_XMEpsilon;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Return a vector of -0.0f (0x80000000),-0.0f,-0.0f,-0.0f
+XMFINLINE XMVECTOR XMVectorSplatSignMask()
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult;
+    vResult.vector4_u32[0] = 
+    vResult.vector4_u32[1] = 
+    vResult.vector4_u32[2] = 
+    vResult.vector4_u32[3] = 0x80000000U;
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i V = _mm_set1_epi32( 0x80000000 );
+    return reinterpret_cast<__m128*>(&V)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Return a floating point value via an index. This is not a recommended
+// function to use due to performance loss.
+XMFINLINE FLOAT XMVectorGetByIndex(FXMVECTOR V,UINT i)
+{
+    XMASSERT( i <= 3 );
+#if defined(_XM_NO_INTRINSICS_)
+    return V.vector4_f32[i];
+#elif defined(_XM_SSE_INTRINSICS_)
+    return V.m128_f32[i];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Return the X component in an FPU register. 
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE FLOAT XMVectorGetX(FXMVECTOR V)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return V.vector4_f32[0];
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_MSC_VER) && (_MSC_VER>=1500)
+    return _mm_cvtss_f32(V);    
+#else
+    return V.m128_f32[0];
+#endif
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Return the Y component in an FPU register. 
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE FLOAT XMVectorGetY(FXMVECTOR V)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return V.vector4_f32[1];
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_MSC_VER) && (_MSC_VER>=1500)
+    XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
+    return _mm_cvtss_f32(vTemp);
+#else
+    return V.m128_f32[1];
+#endif
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Return the Z component in an FPU register. 
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE FLOAT XMVectorGetZ(FXMVECTOR V)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return V.vector4_f32[2];
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_MSC_VER) && (_MSC_VER>=1500)
+    XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
+    return _mm_cvtss_f32(vTemp);
+#else
+    return V.m128_f32[2];
+#endif
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Return the W component in an FPU register. 
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE FLOAT XMVectorGetW(FXMVECTOR V)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return V.vector4_f32[3];
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_MSC_VER) && (_MSC_VER>=1500)
+    XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,3,3,3));
+    return _mm_cvtss_f32(vTemp);
+#else
+    return V.m128_f32[3];
+#endif
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Store a component indexed by i into a 32 bit float location in memory.
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE VOID XMVectorGetByIndexPtr(FLOAT *f,FXMVECTOR V,UINT i)
+{
+    XMASSERT( f != 0 );
+    XMASSERT( i <  4 );
+#if defined(_XM_NO_INTRINSICS_)
+    *f = V.vector4_f32[i];
+#elif defined(_XM_SSE_INTRINSICS_)
+    *f = V.m128_f32[i];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Store the X component into a 32 bit float location in memory.
+XMFINLINE VOID XMVectorGetXPtr(FLOAT *x,FXMVECTOR V)
+{
+    XMASSERT( x != 0 );
+#if defined(_XM_NO_INTRINSICS_)
+    *x = V.vector4_f32[0];
+#elif defined(_XM_SSE_INTRINSICS_)
+    _mm_store_ss(x,V);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Store the Y component into a 32 bit float location in memory.
+XMFINLINE VOID XMVectorGetYPtr(FLOAT *y,FXMVECTOR V)
+{
+    XMASSERT( y != 0 );
+#if defined(_XM_NO_INTRINSICS_)
+    *y = V.vector4_f32[1];
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
+    _mm_store_ss(y,vResult);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Store the Z component into a 32 bit float location in memory.
+XMFINLINE VOID XMVectorGetZPtr(FLOAT *z,FXMVECTOR V)
+{
+    XMASSERT( z != 0 );
+#if defined(_XM_NO_INTRINSICS_)
+    *z = V.vector4_f32[2];
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
+    _mm_store_ss(z,vResult);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Store the W component into a 32 bit float location in memory.
+XMFINLINE VOID XMVectorGetWPtr(FLOAT *w,FXMVECTOR V)
+{
+    XMASSERT( w != 0 );
+#if defined(_XM_NO_INTRINSICS_)
+    *w = V.vector4_f32[3];
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,3,3,3));
+    _mm_store_ss(w,vResult);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Return an integer value via an index. This is not a recommended
+// function to use due to performance loss.
+XMFINLINE UINT XMVectorGetIntByIndex(FXMVECTOR V, UINT i)
+{
+    XMASSERT( i < 4 );
+#if defined(_XM_NO_INTRINSICS_)
+    return V.vector4_u32[i];
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_MSC_VER) && (_MSC_VER<1400)
+    XMVECTORU32 tmp;
+    tmp.v = V;
+    return tmp.u[i];
+#else
+    return V.m128_u32[i];
+#endif
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Return the X component in an integer register. 
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE UINT XMVectorGetIntX(FXMVECTOR V)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return V.vector4_u32[0];
+#elif defined(_XM_SSE_INTRINSICS_)
+    return static_cast<UINT>(_mm_cvtsi128_si32(reinterpret_cast<const __m128i *>(&V)[0]));
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Return the Y component in an integer register. 
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE UINT XMVectorGetIntY(FXMVECTOR V)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return V.vector4_u32[1];
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vResulti = _mm_shuffle_epi32(reinterpret_cast<const __m128i *>(&V)[0],_MM_SHUFFLE(1,1,1,1));
+    return static_cast<UINT>(_mm_cvtsi128_si32(vResulti));
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Return the Z component in an integer register. 
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE UINT XMVectorGetIntZ(FXMVECTOR V)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return V.vector4_u32[2];
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vResulti = _mm_shuffle_epi32(reinterpret_cast<const __m128i *>(&V)[0],_MM_SHUFFLE(2,2,2,2));
+    return static_cast<UINT>(_mm_cvtsi128_si32(vResulti));
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Return the W component in an integer register. 
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE UINT XMVectorGetIntW(FXMVECTOR V)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return V.vector4_u32[3];
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vResulti = _mm_shuffle_epi32(reinterpret_cast<const __m128i *>(&V)[0],_MM_SHUFFLE(3,3,3,3));
+    return static_cast<UINT>(_mm_cvtsi128_si32(vResulti));
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Store a component indexed by i into a 32 bit integer location in memory.
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE VOID XMVectorGetIntByIndexPtr(UINT *x,FXMVECTOR V,UINT i)
+{
+    XMASSERT( x != 0 );
+    XMASSERT( i <  4 );
+#if defined(_XM_NO_INTRINSICS_)
+    *x = V.vector4_u32[i];
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_MSC_VER) && (_MSC_VER<1400)
+    XMVECTORU32 tmp;
+    tmp.v = V;
+    *x = tmp.u[i];
+#else
+    *x = V.m128_u32[i];
+#endif
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Store the X component into a 32 bit integer location in memory.
+XMFINLINE VOID XMVectorGetIntXPtr(UINT *x,FXMVECTOR V)
+{
+    XMASSERT( x != 0 );
+#if defined(_XM_NO_INTRINSICS_)
+    *x = V.vector4_u32[0];
+#elif defined(_XM_SSE_INTRINSICS_)
+    _mm_store_ss(reinterpret_cast<float *>(x),V);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Store the Y component into a 32 bit integer location in memory.
+XMFINLINE VOID XMVectorGetIntYPtr(UINT *y,FXMVECTOR V)
+{
+    XMASSERT( y != 0 );
+#if defined(_XM_NO_INTRINSICS_)
+    *y = V.vector4_u32[1];
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
+    _mm_store_ss(reinterpret_cast<float *>(y),vResult);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Store the Z component into a 32 bit integer locaCantion in memory.
+XMFINLINE VOID XMVectorGetIntZPtr(UINT *z,FXMVECTOR V)
+{
+    XMASSERT( z != 0 );
+#if defined(_XM_NO_INTRINSICS_)
+    *z = V.vector4_u32[2];
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
+    _mm_store_ss(reinterpret_cast<float *>(z),vResult);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Store the W component into a 32 bit integer location in memory.
+XMFINLINE VOID XMVectorGetIntWPtr(UINT *w,FXMVECTOR V)
+{
+    XMASSERT( w != 0 );
+#if defined(_XM_NO_INTRINSICS_)
+    *w = V.vector4_u32[3];
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,3,3,3));
+    _mm_store_ss(reinterpret_cast<float *>(w),vResult);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Set a single indexed floating point component
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetByIndex(FXMVECTOR V, FLOAT f,UINT i)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( i <= 3 );
+    U = V;
+    U.vector4_f32[i] = f;
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( i <= 3 );
+    XMVECTOR U = V;
+    U.m128_f32[i] = f;
+    return U;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Sets the X component of a vector to a passed floating point value
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetX(FXMVECTOR V, FLOAT x)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    U.vector4_f32[0] = x;
+    U.vector4_f32[1] = V.vector4_f32[1];
+    U.vector4_f32[2] = V.vector4_f32[2];
+    U.vector4_f32[3] = V.vector4_f32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_XM_ISVS2005_)
+    XMVECTOR vResult = V;
+    vResult.m128_f32[0] = x;
+    return vResult;
+#else
+    XMVECTOR vResult = _mm_set_ss(x);
+    vResult = _mm_move_ss(V,vResult);
+    return vResult;
+#endif // _XM_ISVS2005_
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the Y component of a vector to a passed floating point value
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetY(FXMVECTOR V, FLOAT y)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    U.vector4_f32[0] = V.vector4_f32[0];
+    U.vector4_f32[1] = y;
+    U.vector4_f32[2] = V.vector4_f32[2];
+    U.vector4_f32[3] = V.vector4_f32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_XM_ISVS2005_)
+    XMVECTOR vResult = V;
+    vResult.m128_f32[1] = y;
+    return vResult;
+#else
+    // Swap y and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,2,0,1));
+    // Convert input to vector
+    XMVECTOR vTemp = _mm_set_ss(y);
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,vTemp);
+    // Swap y and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,2,0,1));
+    return vResult;
+#endif // _XM_ISVS2005_
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+// Sets the Z component of a vector to a passed floating point value
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetZ(FXMVECTOR V, FLOAT z)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    U.vector4_f32[0] = V.vector4_f32[0];
+    U.vector4_f32[1] = V.vector4_f32[1];
+    U.vector4_f32[2] = z;
+    U.vector4_f32[3] = V.vector4_f32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_XM_ISVS2005_)
+    XMVECTOR vResult = V;
+    vResult.m128_f32[2] = z;
+    return vResult;
+#else
+    // Swap z and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,0,1,2));
+    // Convert input to vector
+    XMVECTOR vTemp = _mm_set_ss(z);
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,vTemp);
+    // Swap z and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,0,1,2));
+    return vResult;
+#endif // _XM_ISVS2005_
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the W component of a vector to a passed floating point value
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetW(FXMVECTOR V, FLOAT w)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    U.vector4_f32[0] = V.vector4_f32[0];
+    U.vector4_f32[1] = V.vector4_f32[1];
+    U.vector4_f32[2] = V.vector4_f32[2];
+    U.vector4_f32[3] = w;
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_XM_ISVS2005_)
+    XMVECTOR vResult = V;
+    vResult.m128_f32[3] = w;
+    return vResult;
+#else
+    // Swap w and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,2,1,3));
+    // Convert input to vector
+    XMVECTOR vTemp = _mm_set_ss(w);
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,vTemp);
+    // Swap w and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,2,1,3));
+    return vResult;
+#endif // _XM_ISVS2005_
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Sets a component of a vector to a floating point value passed by pointer
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetByIndexPtr(FXMVECTOR V,CONST FLOAT *f,UINT i)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( f != 0 );
+    XMASSERT( i <= 3 );
+    U = V;
+    U.vector4_f32[i] = *f;
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( f != 0 );
+    XMASSERT( i <= 3 );
+    XMVECTOR U = V;
+    U.m128_f32[i] = *f;
+    return U;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Sets the X component of a vector to a floating point value passed by pointer
+XMFINLINE XMVECTOR XMVectorSetXPtr(FXMVECTOR V,CONST FLOAT *x)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( x != 0 );
+    U.vector4_f32[0] = *x;
+    U.vector4_f32[1] = V.vector4_f32[1];
+    U.vector4_f32[2] = V.vector4_f32[2];
+    U.vector4_f32[3] = V.vector4_f32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( x != 0 );
+    XMVECTOR vResult = _mm_load_ss(x);
+    vResult = _mm_move_ss(V,vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the Y component of a vector to a floating point value passed by pointer
+XMFINLINE XMVECTOR XMVectorSetYPtr(FXMVECTOR V,CONST FLOAT *y)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( y != 0 );
+    U.vector4_f32[0] = V.vector4_f32[0];
+    U.vector4_f32[1] = *y;
+    U.vector4_f32[2] = V.vector4_f32[2];
+    U.vector4_f32[3] = V.vector4_f32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( y != 0 );
+    // Swap y and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,2,0,1));
+    // Convert input to vector
+    XMVECTOR vTemp = _mm_load_ss(y);
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,vTemp);
+    // Swap y and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,2,0,1));
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the Z component of a vector to a floating point value passed by pointer
+XMFINLINE XMVECTOR XMVectorSetZPtr(FXMVECTOR V,CONST FLOAT *z)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( z != 0 );
+    U.vector4_f32[0] = V.vector4_f32[0];
+    U.vector4_f32[1] = V.vector4_f32[1];
+    U.vector4_f32[2] = *z;
+    U.vector4_f32[3] = V.vector4_f32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( z != 0 );
+    // Swap z and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,0,1,2));
+    // Convert input to vector
+    XMVECTOR vTemp = _mm_load_ss(z);
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,vTemp);
+    // Swap z and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,0,1,2));
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the W component of a vector to a floating point value passed by pointer
+XMFINLINE XMVECTOR XMVectorSetWPtr(FXMVECTOR V,CONST FLOAT *w)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( w != 0 );
+    U.vector4_f32[0] = V.vector4_f32[0];
+    U.vector4_f32[1] = V.vector4_f32[1];
+    U.vector4_f32[2] = V.vector4_f32[2];
+    U.vector4_f32[3] = *w;
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( w != 0 );
+    // Swap w and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,2,1,3));
+    // Convert input to vector
+    XMVECTOR vTemp = _mm_load_ss(w);
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,vTemp);
+    // Swap w and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,2,1,3));
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Sets a component of a vector to an integer passed by value
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetIntByIndex(FXMVECTOR V, UINT x, UINT i)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( i <= 3 );
+    U = V;
+    U.vector4_u32[i] = x;
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( i <= 3 );
+    XMVECTORU32 tmp;
+    tmp.v = V;
+    tmp.u[i] = x;
+    return tmp;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Sets the X component of a vector to an integer passed by value
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetIntX(FXMVECTOR V, UINT x)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    U.vector4_u32[0] = x;
+    U.vector4_u32[1] = V.vector4_u32[1];
+    U.vector4_u32[2] = V.vector4_u32[2];
+    U.vector4_u32[3] = V.vector4_u32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_XM_ISVS2005_)
+    XMVECTOR vResult = V;
+    vResult.m128_i32[0] = x;
+    return vResult;
+#else
+    __m128i vTemp = _mm_cvtsi32_si128(x);
+    XMVECTOR vResult = _mm_move_ss(V,reinterpret_cast<const __m128 *>(&vTemp)[0]);
+    return vResult;
+#endif // _XM_ISVS2005_
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the Y component of a vector to an integer passed by value
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetIntY(FXMVECTOR V, UINT y)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    U.vector4_u32[0] = V.vector4_u32[0];
+    U.vector4_u32[1] = y;
+    U.vector4_u32[2] = V.vector4_u32[2];
+    U.vector4_u32[3] = V.vector4_u32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_XM_ISVS2005_)
+    XMVECTOR vResult = V;
+    vResult.m128_i32[1] = y;
+    return vResult;
+#else    // Swap y and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,2,0,1));
+    // Convert input to vector
+    __m128i vTemp = _mm_cvtsi32_si128(y);
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,reinterpret_cast<const __m128 *>(&vTemp)[0]);
+    // Swap y and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,2,0,1));
+    return vResult;
+#endif // _XM_ISVS2005_
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the Z component of a vector to an integer passed by value
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetIntZ(FXMVECTOR V, UINT z)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    U.vector4_u32[0] = V.vector4_u32[0];
+    U.vector4_u32[1] = V.vector4_u32[1];
+    U.vector4_u32[2] = z;
+    U.vector4_u32[3] = V.vector4_u32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_XM_ISVS2005_)
+    XMVECTOR vResult = V;
+    vResult.m128_i32[2] = z;
+    return vResult;
+#else
+    // Swap z and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,0,1,2));
+    // Convert input to vector
+    __m128i vTemp = _mm_cvtsi32_si128(z);
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,reinterpret_cast<const __m128 *>(&vTemp)[0]);
+    // Swap z and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,0,1,2));
+    return vResult;
+#endif // _XM_ISVS2005_
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the W component of a vector to an integer passed by value
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetIntW(FXMVECTOR V, UINT w)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    U.vector4_u32[0] = V.vector4_u32[0];
+    U.vector4_u32[1] = V.vector4_u32[1];
+    U.vector4_u32[2] = V.vector4_u32[2];
+    U.vector4_u32[3] = w;
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_XM_ISVS2005_)
+    XMVECTOR vResult = V;
+    vResult.m128_i32[3] = w;
+    return vResult;
+#else
+    // Swap w and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,2,1,3));
+    // Convert input to vector
+    __m128i vTemp = _mm_cvtsi32_si128(w);
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,reinterpret_cast<const __m128 *>(&vTemp)[0]);
+    // Swap w and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,2,1,3));
+    return vResult;
+#endif // _XM_ISVS2005_
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Sets a component of a vector to an integer value passed by pointer
+// This causes Load/Hit/Store on VMX targets
+XMFINLINE XMVECTOR XMVectorSetIntByIndexPtr(FXMVECTOR V, CONST UINT *x,UINT i)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( x != 0 );
+    XMASSERT( i <= 3 );
+    U = V;
+    U.vector4_u32[i] = *x;
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( x != 0 );
+    XMASSERT( i <= 3 );
+    XMVECTORU32 tmp;
+    tmp.v = V;
+    tmp.u[i] = *x;
+    return tmp;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Sets the X component of a vector to an integer value passed by pointer
+XMFINLINE XMVECTOR XMVectorSetIntXPtr(FXMVECTOR V,CONST UINT *x)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( x != 0 );
+    U.vector4_u32[0] = *x;
+    U.vector4_u32[1] = V.vector4_u32[1];
+    U.vector4_u32[2] = V.vector4_u32[2];
+    U.vector4_u32[3] = V.vector4_u32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( x != 0 );
+    XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float *>(x));
+    XMVECTOR vResult = _mm_move_ss(V,vTemp);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the Y component of a vector to an integer value passed by pointer
+XMFINLINE XMVECTOR XMVectorSetIntYPtr(FXMVECTOR V,CONST UINT *y)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( y != 0 );
+    U.vector4_u32[0] = V.vector4_u32[0];
+    U.vector4_u32[1] = *y;
+    U.vector4_u32[2] = V.vector4_u32[2];
+    U.vector4_u32[3] = V.vector4_u32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( y != 0 );
+    // Swap y and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,2,0,1));
+    // Convert input to vector
+    XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float *>(y));
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,vTemp);
+    // Swap y and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,2,0,1));
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the Z component of a vector to an integer value passed by pointer
+XMFINLINE XMVECTOR XMVectorSetIntZPtr(FXMVECTOR V,CONST UINT *z)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( z != 0 );
+    U.vector4_u32[0] = V.vector4_u32[0];
+    U.vector4_u32[1] = V.vector4_u32[1];
+    U.vector4_u32[2] = *z;
+    U.vector4_u32[3] = V.vector4_u32[3];
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( z != 0 );
+    // Swap z and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,0,1,2));
+    // Convert input to vector
+    XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float *>(z));
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,vTemp);
+    // Swap z and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,0,1,2));
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+// Sets the W component of a vector to an integer value passed by pointer
+XMFINLINE XMVECTOR XMVectorSetIntWPtr(FXMVECTOR V,CONST UINT *w)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR U;
+    XMASSERT( w != 0 );
+    U.vector4_u32[0] = V.vector4_u32[0];
+    U.vector4_u32[1] = V.vector4_u32[1];
+    U.vector4_u32[2] = V.vector4_u32[2];
+    U.vector4_u32[3] = *w;
+    return U;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( w != 0 );
+    // Swap w and x
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,2,1,3));
+    // Convert input to vector
+    XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float *>(w));
+    // Replace the x component
+    vResult = _mm_move_ss(vResult,vTemp);
+    // Swap w and x again
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,2,1,3));
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Define a control vector to be used in XMVectorPermute
+// operations.  Visualize the two vectors V1 and V2 given
+// in a permute as arranged back to back in a linear fashion,
+// such that they form an array of 8 floating point values.
+// The four integers specified in XMVectorPermuteControl
+// will serve as indices into the array to select components
+// from the two vectors.  ElementIndex0 is used to select
+// an element from the vectors to be placed in the first
+// component of the resulting vector, ElementIndex1 is used
+// to select an element for the second component, etc.
+
+XMFINLINE XMVECTOR XMVectorPermuteControl
+(
+    UINT     ElementIndex0, 
+    UINT     ElementIndex1, 
+    UINT     ElementIndex2, 
+    UINT     ElementIndex3
+)
+{
+#if defined(_XM_SSE_INTRINSICS_) || defined(_XM_NO_INTRINSICS_)
+    XMVECTORU32 vControl;
+    static CONST UINT ControlElement[] = {
+                    XM_PERMUTE_0X,
+                    XM_PERMUTE_0Y,
+                    XM_PERMUTE_0Z,
+                    XM_PERMUTE_0W,
+                    XM_PERMUTE_1X,
+                    XM_PERMUTE_1Y,
+                    XM_PERMUTE_1Z,
+                    XM_PERMUTE_1W
+                };
+    XMASSERT(ElementIndex0 < 8);
+    XMASSERT(ElementIndex1 < 8);
+    XMASSERT(ElementIndex2 < 8);
+    XMASSERT(ElementIndex3 < 8);
+
+    vControl.u[0] = ControlElement[ElementIndex0];
+    vControl.u[1] = ControlElement[ElementIndex1];
+    vControl.u[2] = ControlElement[ElementIndex2];
+    vControl.u[3] = ControlElement[ElementIndex3];
+    return vControl.v;
+#else
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+// Using a control vector made up of 16 bytes from 0-31, remap V1 and V2's byte
+// entries into a single 16 byte vector and return it. Index 0-15 = V1,
+// 16-31 = V2
+XMFINLINE XMVECTOR XMVectorPermute
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2, 
+    FXMVECTOR Control
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    const BYTE *aByte[2];
+    XMVECTOR Result;
+    UINT i, uIndex, VectorIndex;
+    const BYTE *pControl;
+    BYTE *pWork;
+
+    // Indices must be in range from 0 to 31
+    XMASSERT((Control.vector4_u32[0] & 0xE0E0E0E0) == 0);
+    XMASSERT((Control.vector4_u32[1] & 0xE0E0E0E0) == 0);
+    XMASSERT((Control.vector4_u32[2] & 0xE0E0E0E0) == 0);
+    XMASSERT((Control.vector4_u32[3] & 0xE0E0E0E0) == 0);
+
+    // 0-15 = V1, 16-31 = V2
+    aByte[0] = (const BYTE*)(&V1);
+    aByte[1] = (const BYTE*)(&V2);
+    i = 16;
+    pControl = (const BYTE *)(&Control);
+    pWork = (BYTE *)(&Result);
+    do {
+        // Get the byte to map from
+        uIndex = pControl[0];
+        ++pControl;
+        VectorIndex = (uIndex>>4)&1;
+        uIndex &= 0x0F;
+#if defined(_XM_LITTLEENDIAN_)
+        uIndex ^= 3; // Swap byte ordering on little endian machines
+#endif
+        pWork[0] = aByte[VectorIndex][uIndex];
+        ++pWork;
+    } while (--i);
+    return Result;
+#elif defined(_XM_SSE_INTRINSICS_)
+#if defined(_PREFAST_) || defined(XMDEBUG)
+    // Indices must be in range from 0 to 31
+    static const XMVECTORI32 PremuteTest = {0xE0E0E0E0,0xE0E0E0E0,0xE0E0E0E0,0xE0E0E0E0};
+    XMVECTOR vAssert = _mm_and_ps(Control,PremuteTest);
+    __m128i vAsserti = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&vAssert)[0],g_XMZero);
+    XMASSERT(_mm_movemask_ps(*reinterpret_cast<const __m128 *>(&vAsserti)) == 0xf);
+#endif
+    // Store the vectors onto local memory on the stack
+    XMVECTOR Array[2];
+    Array[0] = V1;
+    Array[1] = V2;
+    // Output vector, on the stack
+    XMVECTORU8 vResult;
+    // Get pointer to the two vectors on the stack
+    const BYTE *pInput = reinterpret_cast<const BYTE *>(Array);
+    // Store the Control vector on the stack to access the bytes
+    // don't use Control, it can cause a register variable to spill on the stack.
+    XMVECTORU8 vControl;
+    vControl.v = Control;   // Write to memory
+    UINT i = 0;
+    do {
+        UINT ComponentIndex = vControl.u[i] & 0x1FU;
+        ComponentIndex ^= 3; // Swap byte ordering
+        vResult.u[i] = pInput[ComponentIndex];
+    } while (++i<16);
+    return vResult;
+#else // _XM_SSE_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Define a control vector to be used in XMVectorSelect 
+// operations.  The four integers specified in XMVectorSelectControl
+// serve as indices to select between components in two vectors.
+// The first index controls selection for the first component of 
+// the vectors involved in a select operation, the second index 
+// controls selection for the second component etc.  A value of
+// zero for an index causes the corresponding component from the first 
+// vector to be selected whereas a one causes the component from the
+// second vector to be selected instead.
+
+XMFINLINE XMVECTOR XMVectorSelectControl
+(
+    UINT VectorIndex0, 
+    UINT VectorIndex1, 
+    UINT VectorIndex2, 
+    UINT VectorIndex3
+)
+{
+#if defined(_XM_SSE_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_)
+    // x=Index0,y=Index1,z=Index2,w=Index3
+    __m128i vTemp = _mm_set_epi32(VectorIndex3,VectorIndex2,VectorIndex1,VectorIndex0);
+    // Any non-zero entries become 0xFFFFFFFF else 0
+    vTemp = _mm_cmpgt_epi32(vTemp,g_XMZero);
+    return reinterpret_cast<__m128 *>(&vTemp)[0];
+#else
+    XMVECTOR    ControlVector;
+    CONST UINT  ControlElement[] =
+                {
+                    XM_SELECT_0,
+                    XM_SELECT_1
+                };
+
+    XMASSERT(VectorIndex0 < 2);
+    XMASSERT(VectorIndex1 < 2);
+    XMASSERT(VectorIndex2 < 2);
+    XMASSERT(VectorIndex3 < 2);
+
+    ControlVector.vector4_u32[0] = ControlElement[VectorIndex0];
+    ControlVector.vector4_u32[1] = ControlElement[VectorIndex1];
+    ControlVector.vector4_u32[2] = ControlElement[VectorIndex2];
+    ControlVector.vector4_u32[3] = ControlElement[VectorIndex3];
+
+    return ControlVector;
+
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorSelect
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2, 
+    FXMVECTOR Control
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_u32[0] = (V1.vector4_u32[0] & ~Control.vector4_u32[0]) | (V2.vector4_u32[0] & Control.vector4_u32[0]);
+    Result.vector4_u32[1] = (V1.vector4_u32[1] & ~Control.vector4_u32[1]) | (V2.vector4_u32[1] & Control.vector4_u32[1]);
+    Result.vector4_u32[2] = (V1.vector4_u32[2] & ~Control.vector4_u32[2]) | (V2.vector4_u32[2] & Control.vector4_u32[2]);
+    Result.vector4_u32[3] = (V1.vector4_u32[3] & ~Control.vector4_u32[3]) | (V2.vector4_u32[3] & Control.vector4_u32[3]);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp1 = _mm_andnot_ps(Control,V1);
+    XMVECTOR vTemp2 = _mm_and_ps(V2,Control);
+    return _mm_or_ps(vTemp1,vTemp2);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorMergeXY
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_u32[0] = V1.vector4_u32[0];
+    Result.vector4_u32[1] = V2.vector4_u32[0];
+    Result.vector4_u32[2] = V1.vector4_u32[1];
+    Result.vector4_u32[3] = V2.vector4_u32[1];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_unpacklo_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorMergeZW
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_u32[0] = V1.vector4_u32[2];
+    Result.vector4_u32[1] = V2.vector4_u32[2];
+    Result.vector4_u32[2] = V1.vector4_u32[3];
+    Result.vector4_u32[3] = V2.vector4_u32[3];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_unpackhi_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Comparison operations
+//------------------------------------------------------------------------------
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+
+    Control.vector4_u32[0] = (V1.vector4_f32[0] == V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[1] = (V1.vector4_f32[1] == V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[2] = (V1.vector4_f32[2] == V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[3] = (V1.vector4_f32[3] == V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
+
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_cmpeq_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorEqualR
+(
+    UINT*    pCR,
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT ux, uy, uz, uw, CR;
+    XMVECTOR Control;
+
+    XMASSERT( pCR );
+
+    ux = (V1.vector4_f32[0] == V2.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
+    uy = (V1.vector4_f32[1] == V2.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
+    uz = (V1.vector4_f32[2] == V2.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
+    uw = (V1.vector4_f32[3] == V2.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
+    CR = 0;
+    if (ux&uy&uz&uw)
+    {
+        // All elements are greater
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!(ux|uy|uz|uw))
+    {
+        // All elements are not greater
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    *pCR = CR;
+    Control.vector4_u32[0] = ux;
+    Control.vector4_u32[1] = uy;
+    Control.vector4_u32[2] = uz;
+    Control.vector4_u32[3] = uw;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( pCR );
+    XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
+    UINT CR = 0;
+    int iTest = _mm_movemask_ps(vTemp);
+    if (iTest==0xf)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        // All elements are not greater
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    *pCR = CR;
+    return vTemp;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Treat the components of the vectors as unsigned integers and
+// compare individual bits between the two.  This is useful for
+// comparing control vectors and result vectors returned from
+// other comparison operations.
+
+XMFINLINE XMVECTOR XMVectorEqualInt
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+
+    Control.vector4_u32[0] = (V1.vector4_u32[0] == V2.vector4_u32[0]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[1] = (V1.vector4_u32[1] == V2.vector4_u32[1]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[2] = (V1.vector4_u32[2] == V2.vector4_u32[2]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[3] = (V1.vector4_u32[3] == V2.vector4_u32[3]) ? 0xFFFFFFFF : 0;
+
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i V = _mm_cmpeq_epi32( reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0] );
+    return reinterpret_cast<__m128 *>(&V)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorEqualIntR
+(
+    UINT*    pCR,
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+
+    XMASSERT(pCR);
+
+    Control = XMVectorEqualInt(V1, V2);
+
+    *pCR = 0;
+
+    if (XMVector4EqualInt(Control, XMVectorTrueInt()))
+    {
+        // All elements are equal
+        *pCR |= XM_CRMASK_CR6TRUE;
+    }
+    else if (XMVector4EqualInt(Control, XMVectorFalseInt()))
+    {
+        // All elements are not equal
+        *pCR |= XM_CRMASK_CR6FALSE;
+    }
+
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pCR);
+    __m128i V = _mm_cmpeq_epi32( reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0] );
+    int iTemp = _mm_movemask_ps(reinterpret_cast<const __m128*>(&V)[0]);
+    UINT CR = 0;
+    if (iTemp==0x0F)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTemp)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    *pCR = CR;
+    return reinterpret_cast<__m128 *>(&V)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorNearEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2, 
+    FXMVECTOR Epsilon
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    FLOAT fDeltax, fDeltay, fDeltaz, fDeltaw;
+    XMVECTOR Control;
+
+    fDeltax = V1.vector4_f32[0]-V2.vector4_f32[0];
+    fDeltay = V1.vector4_f32[1]-V2.vector4_f32[1];
+    fDeltaz = V1.vector4_f32[2]-V2.vector4_f32[2];
+    fDeltaw = V1.vector4_f32[3]-V2.vector4_f32[3];
+
+    fDeltax = fabsf(fDeltax);
+    fDeltay = fabsf(fDeltay);
+    fDeltaz = fabsf(fDeltaz);
+    fDeltaw = fabsf(fDeltaw);
+
+    Control.vector4_u32[0] = (fDeltax <= Epsilon.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[1] = (fDeltay <= Epsilon.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[2] = (fDeltaz <= Epsilon.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[3] = (fDeltaw <= Epsilon.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
+
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Get the difference
+    XMVECTOR vDelta = _mm_sub_ps(V1,V2);
+    // Get the absolute value of the difference
+    XMVECTOR vTemp = _mm_setzero_ps();
+    vTemp = _mm_sub_ps(vTemp,vDelta);
+    vTemp = _mm_max_ps(vTemp,vDelta);
+    vTemp = _mm_cmple_ps(vTemp,Epsilon);
+    return vTemp;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorNotEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+    Control.vector4_u32[0] = (V1.vector4_f32[0] != V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[1] = (V1.vector4_f32[1] != V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[2] = (V1.vector4_f32[2] != V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[3] = (V1.vector4_f32[3] != V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_cmpneq_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorNotEqualInt
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+    Control.vector4_u32[0] = (V1.vector4_u32[0] != V2.vector4_u32[0]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[1] = (V1.vector4_u32[1] != V2.vector4_u32[1]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[2] = (V1.vector4_u32[2] != V2.vector4_u32[2]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[3] = (V1.vector4_u32[3] != V2.vector4_u32[3]) ? 0xFFFFFFFFU : 0;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i V = _mm_cmpeq_epi32( reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0] );
+    return _mm_xor_ps(reinterpret_cast<__m128 *>(&V)[0],g_XMNegOneMask);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorGreater
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+    Control.vector4_u32[0] = (V1.vector4_f32[0] > V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[1] = (V1.vector4_f32[1] > V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[2] = (V1.vector4_f32[2] > V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[3] = (V1.vector4_f32[3] > V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_cmpgt_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorGreaterR
+(
+    UINT*    pCR,
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT ux, uy, uz, uw, CR;
+    XMVECTOR Control;
+
+    XMASSERT( pCR );
+
+    ux = (V1.vector4_f32[0] > V2.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
+    uy = (V1.vector4_f32[1] > V2.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
+    uz = (V1.vector4_f32[2] > V2.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
+    uw = (V1.vector4_f32[3] > V2.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
+    CR = 0;
+    if (ux&uy&uz&uw)
+    {
+        // All elements are greater
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!(ux|uy|uz|uw))
+    {
+        // All elements are not greater
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    *pCR = CR;
+    Control.vector4_u32[0] = ux;
+    Control.vector4_u32[1] = uy;
+    Control.vector4_u32[2] = uz;
+    Control.vector4_u32[3] = uw;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( pCR );
+    XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
+    UINT CR = 0;
+    int iTest = _mm_movemask_ps(vTemp);
+    if (iTest==0xf)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        // All elements are not greater
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    *pCR = CR;
+    return vTemp;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorGreaterOrEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+    Control.vector4_u32[0] = (V1.vector4_f32[0] >= V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[1] = (V1.vector4_f32[1] >= V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[2] = (V1.vector4_f32[2] >= V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[3] = (V1.vector4_f32[3] >= V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_cmpge_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorGreaterOrEqualR
+(
+    UINT*    pCR,
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT ux, uy, uz, uw, CR;
+    XMVECTOR Control;
+
+    XMASSERT( pCR );
+
+    ux = (V1.vector4_f32[0] >= V2.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
+    uy = (V1.vector4_f32[1] >= V2.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
+    uz = (V1.vector4_f32[2] >= V2.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
+    uw = (V1.vector4_f32[3] >= V2.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
+    CR = 0;
+    if (ux&uy&uz&uw)
+    {
+        // All elements are greater
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!(ux|uy|uz|uw))
+    {
+        // All elements are not greater
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    *pCR = CR;
+    Control.vector4_u32[0] = ux;
+    Control.vector4_u32[1] = uy;
+    Control.vector4_u32[2] = uz;
+    Control.vector4_u32[3] = uw;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( pCR );
+    XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
+    UINT CR = 0;
+    int iTest = _mm_movemask_ps(vTemp);
+    if (iTest==0xf)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        // All elements are not greater
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    *pCR = CR;
+    return vTemp;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorLess
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+    Control.vector4_u32[0] = (V1.vector4_f32[0] < V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[1] = (V1.vector4_f32[1] < V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[2] = (V1.vector4_f32[2] < V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[3] = (V1.vector4_f32[3] < V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_cmplt_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorLessOrEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+    Control.vector4_u32[0] = (V1.vector4_f32[0] <= V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[1] = (V1.vector4_f32[1] <= V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[2] = (V1.vector4_f32[2] <= V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[3] = (V1.vector4_f32[3] <= V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_cmple_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorInBounds
+(
+    FXMVECTOR V, 
+    FXMVECTOR Bounds
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+    Control.vector4_u32[0] = (V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[1] = (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[2] = (V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) ? 0xFFFFFFFF : 0;
+    Control.vector4_u32[3] = (V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3]) ? 0xFFFFFFFF : 0;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Test if less than or equal
+    XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
+    // Negate the bounds
+    XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
+    // Test if greater or equal (Reversed)
+    vTemp2 = _mm_cmple_ps(vTemp2,V);
+    // Blend answers
+    vTemp1 = _mm_and_ps(vTemp1,vTemp2);
+    return vTemp1;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorInBoundsR
+(
+    UINT*    pCR,
+    FXMVECTOR V, 
+    FXMVECTOR Bounds
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT ux, uy, uz, uw, CR;
+    XMVECTOR Control;
+
+    XMASSERT( pCR != 0 );
+
+    ux = (V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
+    uy = (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
+    uz = (V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
+    uw = (V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
+
+    CR = 0;
+
+    if (ux&uy&uz&uw)
+    {
+        // All elements are in bounds
+        CR = XM_CRMASK_CR6BOUNDS;
+    }
+    *pCR = CR;
+    Control.vector4_u32[0] = ux;
+    Control.vector4_u32[1] = uy;
+    Control.vector4_u32[2] = uz;
+    Control.vector4_u32[3] = uw;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT( pCR != 0 );
+    // Test if less than or equal
+    XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
+    // Negate the bounds
+    XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
+    // Test if greater or equal (Reversed)
+    vTemp2 = _mm_cmple_ps(vTemp2,V);
+    // Blend answers
+    vTemp1 = _mm_and_ps(vTemp1,vTemp2);
+
+    UINT CR = 0;
+    if (_mm_movemask_ps(vTemp1)==0xf) {
+        // All elements are in bounds
+        CR = XM_CRMASK_CR6BOUNDS;
+    }
+    *pCR = CR;
+    return vTemp1;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorIsNaN
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+    Control.vector4_u32[0] = XMISNAN(V.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[1] = XMISNAN(V.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[2] = XMISNAN(V.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[3] = XMISNAN(V.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Mask off the exponent
+    __m128i vTempInf = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMInfinity);
+    // Mask off the mantissa
+    __m128i vTempNan = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMQNaNTest);
+    // Are any of the exponents == 0x7F800000?
+    vTempInf = _mm_cmpeq_epi32(vTempInf,g_XMInfinity);
+    // Are any of the mantissa's zero? (SSE2 doesn't have a neq test)
+    vTempNan = _mm_cmpeq_epi32(vTempNan,g_XMZero);
+    // Perform a not on the NaN test to be true on NON-zero mantissas
+    vTempNan = _mm_andnot_si128(vTempNan,vTempInf);
+    // If any are NaN, the signs are true after the merge above
+    return reinterpret_cast<const XMVECTOR *>(&vTempNan)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorIsInfinite
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Control;
+    Control.vector4_u32[0] = XMISINF(V.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[1] = XMISINF(V.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[2] = XMISINF(V.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
+    Control.vector4_u32[3] = XMISINF(V.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
+    return Control;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Mask off the sign bit
+    __m128 vTemp = _mm_and_ps(V,g_XMAbsMask);
+    // Compare to infinity
+    vTemp = _mm_cmpeq_ps(vTemp,g_XMInfinity);
+    // If any are infinity, the signs are true.
+    return vTemp;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Rounding and clamping operations
+//------------------------------------------------------------------------------
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorMin
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+    Result.vector4_f32[0] = (V1.vector4_f32[0] < V2.vector4_f32[0]) ? V1.vector4_f32[0] : V2.vector4_f32[0];
+    Result.vector4_f32[1] = (V1.vector4_f32[1] < V2.vector4_f32[1]) ? V1.vector4_f32[1] : V2.vector4_f32[1];
+    Result.vector4_f32[2] = (V1.vector4_f32[2] < V2.vector4_f32[2]) ? V1.vector4_f32[2] : V2.vector4_f32[2];
+    Result.vector4_f32[3] = (V1.vector4_f32[3] < V2.vector4_f32[3]) ? V1.vector4_f32[3] : V2.vector4_f32[3];
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_min_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorMax
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+    Result.vector4_f32[0] = (V1.vector4_f32[0] > V2.vector4_f32[0]) ? V1.vector4_f32[0] : V2.vector4_f32[0];
+    Result.vector4_f32[1] = (V1.vector4_f32[1] > V2.vector4_f32[1]) ? V1.vector4_f32[1] : V2.vector4_f32[1];
+    Result.vector4_f32[2] = (V1.vector4_f32[2] > V2.vector4_f32[2]) ? V1.vector4_f32[2] : V2.vector4_f32[2];
+    Result.vector4_f32[3] = (V1.vector4_f32[3] > V2.vector4_f32[3]) ? V1.vector4_f32[3] : V2.vector4_f32[3];
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_max_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorRound
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR       Result;
+    XMVECTOR       Bias;
+    CONST XMVECTOR Zero = XMVectorZero();
+    CONST XMVECTOR BiasPos = XMVectorReplicate(0.5f);
+    CONST XMVECTOR BiasNeg = XMVectorReplicate(-0.5f);
+
+    Bias = XMVectorLess(V, Zero);
+    Bias = XMVectorSelect(BiasPos, BiasNeg, Bias);
+    Result = XMVectorAdd(V, Bias);
+    Result = XMVectorTruncate(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // To handle NAN, INF and numbers greater than 8388608, use masking
+    // Get the abs value
+    __m128i vTest = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMAbsMask);
+    // Test for greater than 8388608 (All floats with NO fractionals, NAN and INF
+    vTest = _mm_cmplt_epi32(vTest,g_XMNoFraction);
+    // Convert to int and back to float for rounding
+    __m128i vInt = _mm_cvtps_epi32(V);
+    // Convert back to floats
+    XMVECTOR vResult = _mm_cvtepi32_ps(vInt);
+    // All numbers less than 8388608 will use the round to int
+    vResult = _mm_and_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
+    // All others, use the ORIGINAL value
+    vTest = _mm_andnot_si128(vTest,reinterpret_cast<const __m128i *>(&V)[0]);
+    vResult = _mm_or_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorTruncate
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR Result;
+    UINT     i;
+
+    // Avoid C4701
+    Result.vector4_f32[0] = 0.0f;
+
+    for (i = 0; i < 4; i++)
+    {
+        if (XMISNAN(V.vector4_f32[i]))
+        {
+            Result.vector4_u32[i] = 0x7FC00000;
+        }
+        else if (fabsf(V.vector4_f32[i]) < 8388608.0f)
+        {
+            Result.vector4_f32[i] = (FLOAT)((INT)V.vector4_f32[i]);
+        }
+        else
+        {
+            Result.vector4_f32[i] = V.vector4_f32[i];
+        }
+    }
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // To handle NAN, INF and numbers greater than 8388608, use masking
+    // Get the abs value
+    __m128i vTest = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMAbsMask);
+    // Test for greater than 8388608 (All floats with NO fractionals, NAN and INF
+    vTest = _mm_cmplt_epi32(vTest,g_XMNoFraction);
+    // Convert to int and back to float for rounding with truncation
+    __m128i vInt = _mm_cvttps_epi32(V);
+    // Convert back to floats
+    XMVECTOR vResult = _mm_cvtepi32_ps(vInt);
+    // All numbers less than 8388608 will use the round to int
+    vResult = _mm_and_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
+    // All others, use the ORIGINAL value
+    vTest = _mm_andnot_si128(vTest,reinterpret_cast<const __m128i *>(&V)[0]);
+    vResult = _mm_or_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorFloor
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR vResult = {
+        floorf(V.vector4_f32[0]),
+        floorf(V.vector4_f32[1]),
+        floorf(V.vector4_f32[2]),
+        floorf(V.vector4_f32[3])
+    };
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // To handle NAN, INF and numbers greater than 8388608, use masking
+    // Get the abs value
+    __m128i vTest = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMAbsMask);
+    // Test for greater than 8388608 (All floats with NO fractionals, NAN and INF
+    vTest = _mm_cmplt_epi32(vTest,g_XMNoFraction);
+    // Convert to int and back to float for rounding
+    XMVECTOR vResult = _mm_sub_ps(V,g_XMOneHalfMinusEpsilon);
+    __m128i vInt = _mm_cvtps_epi32(vResult);
+    // Convert back to floats
+    vResult = _mm_cvtepi32_ps(vInt);
+    // All numbers less than 8388608 will use the round to int
+    vResult = _mm_and_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
+    // All others, use the ORIGINAL value
+    vTest = _mm_andnot_si128(vTest,reinterpret_cast<const __m128i *>(&V)[0]);
+    vResult = _mm_or_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorCeiling
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult = {
+        ceilf(V.vector4_f32[0]),
+        ceilf(V.vector4_f32[1]),
+        ceilf(V.vector4_f32[2]),
+        ceilf(V.vector4_f32[3])
+    };
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // To handle NAN, INF and numbers greater than 8388608, use masking
+    // Get the abs value
+    __m128i vTest = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMAbsMask);
+    // Test for greater than 8388608 (All floats with NO fractionals, NAN and INF
+    vTest = _mm_cmplt_epi32(vTest,g_XMNoFraction);
+    // Convert to int and back to float for rounding
+    XMVECTOR vResult = _mm_add_ps(V,g_XMOneHalfMinusEpsilon);
+    __m128i vInt = _mm_cvtps_epi32(vResult);
+    // Convert back to floats
+    vResult = _mm_cvtepi32_ps(vInt);
+    // All numbers less than 8388608 will use the round to int
+    vResult = _mm_and_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
+    // All others, use the ORIGINAL value
+    vTest = _mm_andnot_si128(vTest,reinterpret_cast<const __m128i *>(&V)[0]);
+    vResult = _mm_or_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorClamp
+(
+    FXMVECTOR V, 
+    FXMVECTOR Min, 
+    FXMVECTOR Max
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    XMASSERT(XMVector4LessOrEqual(Min, Max));
+
+    Result = XMVectorMax(Min, V);
+    Result = XMVectorMin(Max, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult;
+    XMASSERT(XMVector4LessOrEqual(Min, Max));
+    vResult = _mm_max_ps(Min,V);
+    vResult = _mm_min_ps(vResult,Max);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorSaturate
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    CONST XMVECTOR Zero = XMVectorZero();
+
+    return XMVectorClamp(V, Zero, g_XMOne.v);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Set <0 to 0
+    XMVECTOR vResult = _mm_max_ps(V,g_XMZero);
+    // Set>1 to 1
+    return _mm_min_ps(vResult,g_XMOne);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Bitwise logical operations
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorAndInt
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_u32[0] = V1.vector4_u32[0] & V2.vector4_u32[0];
+    Result.vector4_u32[1] = V1.vector4_u32[1] & V2.vector4_u32[1];
+    Result.vector4_u32[2] = V1.vector4_u32[2] & V2.vector4_u32[2];
+    Result.vector4_u32[3] = V1.vector4_u32[3] & V2.vector4_u32[3];
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_and_ps(V1,V2);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorAndCInt
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_u32[0] = V1.vector4_u32[0] & ~V2.vector4_u32[0];
+    Result.vector4_u32[1] = V1.vector4_u32[1] & ~V2.vector4_u32[1];
+    Result.vector4_u32[2] = V1.vector4_u32[2] & ~V2.vector4_u32[2];
+    Result.vector4_u32[3] = V1.vector4_u32[3] & ~V2.vector4_u32[3];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i V = _mm_andnot_si128( reinterpret_cast<const __m128i *>(&V2)[0], reinterpret_cast<const __m128i *>(&V1)[0] );
+    return reinterpret_cast<__m128 *>(&V)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorOrInt
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_u32[0] = V1.vector4_u32[0] | V2.vector4_u32[0];
+    Result.vector4_u32[1] = V1.vector4_u32[1] | V2.vector4_u32[1];
+    Result.vector4_u32[2] = V1.vector4_u32[2] | V2.vector4_u32[2];
+    Result.vector4_u32[3] = V1.vector4_u32[3] | V2.vector4_u32[3];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i V = _mm_or_si128( reinterpret_cast<const __m128i *>(&V1)[0], reinterpret_cast<const __m128i *>(&V2)[0] );
+    return reinterpret_cast<__m128 *>(&V)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorNorInt
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_u32[0] = ~(V1.vector4_u32[0] | V2.vector4_u32[0]);
+    Result.vector4_u32[1] = ~(V1.vector4_u32[1] | V2.vector4_u32[1]);
+    Result.vector4_u32[2] = ~(V1.vector4_u32[2] | V2.vector4_u32[2]);
+    Result.vector4_u32[3] = ~(V1.vector4_u32[3] | V2.vector4_u32[3]);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i Result;
+    Result = _mm_or_si128( reinterpret_cast<const __m128i *>(&V1)[0], reinterpret_cast<const __m128i *>(&V2)[0] );
+    Result = _mm_andnot_si128( Result,g_XMNegOneMask);
+    return reinterpret_cast<__m128 *>(&Result)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorXorInt
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_u32[0] = V1.vector4_u32[0] ^ V2.vector4_u32[0];
+    Result.vector4_u32[1] = V1.vector4_u32[1] ^ V2.vector4_u32[1];
+    Result.vector4_u32[2] = V1.vector4_u32[2] ^ V2.vector4_u32[2];
+    Result.vector4_u32[3] = V1.vector4_u32[3] ^ V2.vector4_u32[3];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i V = _mm_xor_si128( reinterpret_cast<const __m128i *>(&V1)[0], reinterpret_cast<const __m128i *>(&V2)[0] );
+    return reinterpret_cast<__m128 *>(&V)[0];
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Computation operations
+//------------------------------------------------------------------------------
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorNegate
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_f32[0] = -V.vector4_f32[0];
+    Result.vector4_f32[1] = -V.vector4_f32[1];
+    Result.vector4_f32[2] = -V.vector4_f32[2];
+    Result.vector4_f32[3] = -V.vector4_f32[3];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR Z;
+
+    Z = _mm_setzero_ps();
+
+    return _mm_sub_ps( Z, V );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorAdd
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_f32[0] = V1.vector4_f32[0] + V2.vector4_f32[0];
+    Result.vector4_f32[1] = V1.vector4_f32[1] + V2.vector4_f32[1];
+    Result.vector4_f32[2] = V1.vector4_f32[2] + V2.vector4_f32[2];
+    Result.vector4_f32[3] = V1.vector4_f32[3] + V2.vector4_f32[3];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_add_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorAddAngles
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR       Mask;
+    XMVECTOR       Offset;
+    XMVECTOR       Result;
+    CONST XMVECTOR Zero = XMVectorZero();
+
+    // Add the given angles together.  If the range of V1 is such
+    // that -Pi <= V1 < Pi and the range of V2 is such that
+    // -2Pi <= V2 <= 2Pi, then the range of the resulting angle
+    // will be -Pi <= Result < Pi.
+    Result = XMVectorAdd(V1, V2);
+
+    Mask = XMVectorLess(Result, g_XMNegativePi.v);
+    Offset = XMVectorSelect(Zero, g_XMTwoPi.v, Mask);
+
+    Mask = XMVectorGreaterOrEqual(Result, g_XMPi.v);
+    Offset = XMVectorSelect(Offset, g_XMNegativeTwoPi.v, Mask);
+
+    Result = XMVectorAdd(Result, Offset);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Adjust the angles
+    XMVECTOR vResult = _mm_add_ps(V1,V2);
+    // Less than Pi?
+    XMVECTOR vOffset = _mm_cmplt_ps(vResult,g_XMNegativePi);
+    vOffset = _mm_and_ps(vOffset,g_XMTwoPi);
+    // Add 2Pi to all entries less than -Pi
+    vResult = _mm_add_ps(vResult,vOffset);
+    // Greater than or equal to Pi?
+    vOffset = _mm_cmpge_ps(vResult,g_XMPi);
+    vOffset = _mm_and_ps(vOffset,g_XMTwoPi);
+    // Sub 2Pi to all entries greater than Pi
+    vResult = _mm_sub_ps(vResult,vOffset);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorSubtract
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_f32[0] = V1.vector4_f32[0] - V2.vector4_f32[0];
+    Result.vector4_f32[1] = V1.vector4_f32[1] - V2.vector4_f32[1];
+    Result.vector4_f32[2] = V1.vector4_f32[2] - V2.vector4_f32[2];
+    Result.vector4_f32[3] = V1.vector4_f32[3] - V2.vector4_f32[3];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_sub_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorSubtractAngles
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR       Mask;
+    XMVECTOR       Offset;
+    XMVECTOR       Result;
+    CONST XMVECTOR Zero = XMVectorZero();
+
+    // Subtract the given angles.  If the range of V1 is such
+    // that -Pi <= V1 < Pi and the range of V2 is such that
+    // -2Pi <= V2 <= 2Pi, then the range of the resulting angle
+    // will be -Pi <= Result < Pi.
+    Result = XMVectorSubtract(V1, V2);
+
+    Mask = XMVectorLess(Result, g_XMNegativePi.v);
+    Offset = XMVectorSelect(Zero, g_XMTwoPi.v, Mask);
+
+    Mask = XMVectorGreaterOrEqual(Result, g_XMPi.v);
+    Offset = XMVectorSelect(Offset, g_XMNegativeTwoPi.v, Mask);
+
+    Result = XMVectorAdd(Result, Offset);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Adjust the angles
+    XMVECTOR vResult = _mm_sub_ps(V1,V2);
+    // Less than Pi?
+    XMVECTOR vOffset = _mm_cmplt_ps(vResult,g_XMNegativePi);
+    vOffset = _mm_and_ps(vOffset,g_XMTwoPi);
+    // Add 2Pi to all entries less than -Pi
+    vResult = _mm_add_ps(vResult,vOffset);
+    // Greater than or equal to Pi?
+    vOffset = _mm_cmpge_ps(vResult,g_XMPi);
+    vOffset = _mm_and_ps(vOffset,g_XMTwoPi);
+    // Sub 2Pi to all entries greater than Pi
+    vResult = _mm_sub_ps(vResult,vOffset);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorMultiply
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR Result = {
+        V1.vector4_f32[0] * V2.vector4_f32[0],
+        V1.vector4_f32[1] * V2.vector4_f32[1],
+        V1.vector4_f32[2] * V2.vector4_f32[2],
+        V1.vector4_f32[3] * V2.vector4_f32[3]
+    };
+    return Result;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_mul_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorMultiplyAdd
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2, 
+    FXMVECTOR V3
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult = {
+        (V1.vector4_f32[0] * V2.vector4_f32[0]) + V3.vector4_f32[0],
+        (V1.vector4_f32[1] * V2.vector4_f32[1]) + V3.vector4_f32[1],
+        (V1.vector4_f32[2] * V2.vector4_f32[2]) + V3.vector4_f32[2],
+        (V1.vector4_f32[3] * V2.vector4_f32[3]) + V3.vector4_f32[3]
+    };
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_mul_ps( V1, V2 );
+    return _mm_add_ps(vResult, V3 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorDivide
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR Result;
+    Result.vector4_f32[0] = V1.vector4_f32[0] / V2.vector4_f32[0];
+    Result.vector4_f32[1] = V1.vector4_f32[1] / V2.vector4_f32[1];
+    Result.vector4_f32[2] = V1.vector4_f32[2] / V2.vector4_f32[2];
+    Result.vector4_f32[3] = V1.vector4_f32[3] / V2.vector4_f32[3];
+    return Result;
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_div_ps( V1, V2 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorNegativeMultiplySubtract
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2, 
+    FXMVECTOR V3
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR vResult = {
+        V3.vector4_f32[0] - (V1.vector4_f32[0] * V2.vector4_f32[0]),
+        V3.vector4_f32[1] - (V1.vector4_f32[1] * V2.vector4_f32[1]),
+        V3.vector4_f32[2] - (V1.vector4_f32[2] * V2.vector4_f32[2]),
+        V3.vector4_f32[3] - (V1.vector4_f32[3] * V2.vector4_f32[3])
+    };
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR R = _mm_mul_ps( V1, V2 );
+    return _mm_sub_ps( V3, R );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorScale
+(
+    FXMVECTOR V, 
+    FLOAT    ScaleFactor
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult = {
+        V.vector4_f32[0] * ScaleFactor,
+        V.vector4_f32[1] * ScaleFactor,
+        V.vector4_f32[2] * ScaleFactor,
+        V.vector4_f32[3] * ScaleFactor
+    };
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+   XMVECTOR vResult = _mm_set_ps1(ScaleFactor);
+   return _mm_mul_ps(vResult,V);
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorReciprocalEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR Result;
+    UINT     i;
+
+    // Avoid C4701
+    Result.vector4_f32[0] = 0.0f;
+
+    for (i = 0; i < 4; i++)
+    {
+        if (XMISNAN(V.vector4_f32[i]))
+        {
+            Result.vector4_u32[i] = 0x7FC00000;
+        }
+        else if (V.vector4_f32[i] == 0.0f || V.vector4_f32[i] == -0.0f)
+        {
+            Result.vector4_u32[i] = 0x7F800000 | (V.vector4_u32[i] & 0x80000000);
+        }
+        else
+        {
+            Result.vector4_f32[i] = 1.f / V.vector4_f32[i];
+        }
+    }
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_rcp_ps(V);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorReciprocal
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return XMVectorReciprocalEst(V);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_div_ps(g_XMOne,V);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Return an estimated square root
+XMFINLINE XMVECTOR XMVectorSqrtEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR Select;
+
+    // if (x == +Infinity)  sqrt(x) = +Infinity
+    // if (x == +0.0f)      sqrt(x) = +0.0f
+    // if (x == -0.0f)      sqrt(x) = -0.0f
+    // if (x < 0.0f)        sqrt(x) = QNaN
+
+    XMVECTOR Result = XMVectorReciprocalSqrtEst(V);
+    XMVECTOR Zero = XMVectorZero();
+    XMVECTOR VEqualsInfinity = XMVectorEqualInt(V, g_XMInfinity.v);
+    XMVECTOR VEqualsZero = XMVectorEqual(V, Zero);
+    Result = XMVectorMultiply(V, Result);
+    Select = XMVectorEqualInt(VEqualsInfinity, VEqualsZero);
+    Result = XMVectorSelect(V, Result, Select);
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_sqrt_ps(V);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorSqrt
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Zero;
+    XMVECTOR VEqualsInfinity, VEqualsZero;
+    XMVECTOR Select;
+    XMVECTOR Result;
+
+    // if (x == +Infinity)  sqrt(x) = +Infinity
+    // if (x == +0.0f)      sqrt(x) = +0.0f
+    // if (x == -0.0f)      sqrt(x) = -0.0f
+    // if (x < 0.0f)        sqrt(x) = QNaN
+
+    Result = XMVectorReciprocalSqrt(V);
+    Zero = XMVectorZero();
+    VEqualsInfinity = XMVectorEqualInt(V, g_XMInfinity.v);
+    VEqualsZero = XMVectorEqual(V, Zero);
+    Result = XMVectorMultiply(V, Result);
+    Select = XMVectorEqualInt(VEqualsInfinity, VEqualsZero);
+    Result = XMVectorSelect(V, Result, Select);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_sqrt_ps(V);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorReciprocalSqrtEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    // if (x == +Infinity)  rsqrt(x) = 0
+    // if (x == +0.0f)      rsqrt(x) = +Infinity
+    // if (x == -0.0f)      rsqrt(x) = -Infinity
+    // if (x < 0.0f)        rsqrt(x) = QNaN
+
+    XMVECTOR Result;
+    UINT     i;
+
+    // Avoid C4701
+    Result.vector4_f32[0] = 0.0f;
+
+    for (i = 0; i < 4; i++)
+    {
+        if (XMISNAN(V.vector4_f32[i]))
+        {
+            Result.vector4_u32[i] = 0x7FC00000;
+        }
+        else if (V.vector4_f32[i] == 0.0f || V.vector4_f32[i] == -0.0f)
+        {
+            Result.vector4_u32[i] = 0x7F800000 | (V.vector4_u32[i] & 0x80000000);
+        }
+        else if (V.vector4_f32[i] < 0.0f)
+        {
+            Result.vector4_u32[i] = 0x7FFFFFFF;
+        }
+        else if (XMISINF(V.vector4_f32[i]))
+        {
+            Result.vector4_f32[i] = 0.0f;
+        }
+        else
+        {
+            Result.vector4_f32[i] = 1.0f / sqrtf(V.vector4_f32[i]);
+        }
+    }
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    return _mm_rsqrt_ps(V);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorReciprocalSqrt
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    return XMVectorReciprocalSqrtEst(V);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_sqrt_ps(V);
+    vResult = _mm_div_ps(g_XMOne,vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorExpEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+    Result.vector4_f32[0] = powf(2.0f, V.vector4_f32[0]);
+    Result.vector4_f32[1] = powf(2.0f, V.vector4_f32[1]);
+    Result.vector4_f32[2] = powf(2.0f, V.vector4_f32[2]);
+    Result.vector4_f32[3] = powf(2.0f, V.vector4_f32[3]);
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_setr_ps(
+        powf(2.0f,XMVectorGetX(V)),
+        powf(2.0f,XMVectorGetY(V)),
+        powf(2.0f,XMVectorGetZ(V)),
+        powf(2.0f,XMVectorGetW(V)));
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorExp
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR               E, S;
+    XMVECTOR               R, R2, R3, R4;
+    XMVECTOR               V0, V1;
+    XMVECTOR               C0X, C0Y, C0Z, C0W;
+    XMVECTOR               C1X, C1Y, C1Z, C1W;
+    XMVECTOR               Result;
+    static CONST XMVECTOR  C0 = {1.0f, -6.93147182e-1f, 2.40226462e-1f, -5.55036440e-2f};
+    static CONST XMVECTOR  C1 = {9.61597636e-3f, -1.32823968e-3f, 1.47491097e-4f, -1.08635004e-5f};
+
+    R = XMVectorFloor(V);
+    E = XMVectorExpEst(R);
+    R = XMVectorSubtract(V, R);
+    R2 = XMVectorMultiply(R, R);
+    R3 = XMVectorMultiply(R, R2);
+    R4 = XMVectorMultiply(R2, R2);
+
+    C0X = XMVectorSplatX(C0);
+    C0Y = XMVectorSplatY(C0);
+    C0Z = XMVectorSplatZ(C0);
+    C0W = XMVectorSplatW(C0);
+
+    C1X = XMVectorSplatX(C1);
+    C1Y = XMVectorSplatY(C1);
+    C1Z = XMVectorSplatZ(C1);
+    C1W = XMVectorSplatW(C1);
+
+    V0 = XMVectorMultiplyAdd(R, C0Y, C0X);
+    V0 = XMVectorMultiplyAdd(R2, C0Z, V0);
+    V0 = XMVectorMultiplyAdd(R3, C0W, V0);
+
+    V1 = XMVectorMultiplyAdd(R, C1Y, C1X);
+    V1 = XMVectorMultiplyAdd(R2, C1Z, V1);
+    V1 = XMVectorMultiplyAdd(R3, C1W, V1);
+
+    S = XMVectorMultiplyAdd(R4, V1, V0);
+
+    S = XMVectorReciprocal(S);
+    Result = XMVectorMultiply(E, S);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    static CONST XMVECTORF32 C0 = {1.0f, -6.93147182e-1f, 2.40226462e-1f, -5.55036440e-2f};
+    static CONST XMVECTORF32 C1 = {9.61597636e-3f, -1.32823968e-3f, 1.47491097e-4f, -1.08635004e-5f};
+
+    // Get the integer of the input
+    XMVECTOR R = XMVectorFloor(V);
+    // Get the exponent estimate
+    XMVECTOR E = XMVectorExpEst(R);
+    // Get the fractional only
+    R = _mm_sub_ps(V,R);
+    // Get R^2
+    XMVECTOR R2 = _mm_mul_ps(R,R);
+    // And R^3
+    XMVECTOR R3 = _mm_mul_ps(R,R2);
+
+    XMVECTOR V0 = _mm_load_ps1(&C0.f[1]);
+    V0 = _mm_mul_ps(V0,R);
+    XMVECTOR vConstants = _mm_load_ps1(&C0.f[0]);
+    V0 = _mm_add_ps(V0,vConstants);
+    vConstants = _mm_load_ps1(&C0.f[2]);
+    vConstants = _mm_mul_ps(vConstants,R2);
+    V0 = _mm_add_ps(V0,vConstants);
+    vConstants = _mm_load_ps1(&C0.f[3]);
+    vConstants = _mm_mul_ps(vConstants,R3);
+    V0 = _mm_add_ps(V0,vConstants);
+
+    XMVECTOR V1 = _mm_load_ps1(&C1.f[1]);
+    V1 = _mm_mul_ps(V1,R);
+    vConstants = _mm_load_ps1(&C1.f[0]);
+    V1 = _mm_add_ps(V1,vConstants);
+    vConstants = _mm_load_ps1(&C1.f[2]);
+    vConstants = _mm_mul_ps(vConstants,R2);
+    V1 = _mm_add_ps(V1,vConstants);
+    vConstants = _mm_load_ps1(&C1.f[3]);
+    vConstants = _mm_mul_ps(vConstants,R3);
+    V1 = _mm_add_ps(V1,vConstants);
+    // R2 = R^4
+    R2 = _mm_mul_ps(R2,R2);
+    R2 = _mm_mul_ps(R2,V1);
+    R2 = _mm_add_ps(R2,V0);
+    E = _mm_div_ps(E,R2);
+    return E;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorLogEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    FLOAT fScale = (1.0f / logf(2.0f));
+    XMVECTOR Result;
+
+    Result.vector4_f32[0] = logf(V.vector4_f32[0])*fScale;
+    Result.vector4_f32[1] = logf(V.vector4_f32[1])*fScale;
+    Result.vector4_f32[2] = logf(V.vector4_f32[2])*fScale;
+    Result.vector4_f32[3] = logf(V.vector4_f32[3])*fScale;
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vScale = _mm_set_ps1(1.0f / logf(2.0f));
+    XMVECTOR vResult = _mm_setr_ps(
+        logf(XMVectorGetX(V)),
+        logf(XMVectorGetY(V)),
+        logf(XMVectorGetZ(V)),
+        logf(XMVectorGetW(V)));
+    vResult = _mm_mul_ps(vResult,vScale);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorLog
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    FLOAT fScale = (1.0f / logf(2.0f));
+    XMVECTOR Result;
+
+    Result.vector4_f32[0] = logf(V.vector4_f32[0])*fScale;
+    Result.vector4_f32[1] = logf(V.vector4_f32[1])*fScale;
+    Result.vector4_f32[2] = logf(V.vector4_f32[2])*fScale;
+    Result.vector4_f32[3] = logf(V.vector4_f32[3])*fScale;
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vScale = _mm_set_ps1(1.0f / logf(2.0f));
+    XMVECTOR vResult = _mm_setr_ps(
+        logf(XMVectorGetX(V)),
+        logf(XMVectorGetY(V)),
+        logf(XMVectorGetZ(V)),
+        logf(XMVectorGetW(V)));
+    vResult = _mm_mul_ps(vResult,vScale);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorPowEst
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_f32[0] = powf(V1.vector4_f32[0], V2.vector4_f32[0]);
+    Result.vector4_f32[1] = powf(V1.vector4_f32[1], V2.vector4_f32[1]);
+    Result.vector4_f32[2] = powf(V1.vector4_f32[2], V2.vector4_f32[2]);
+    Result.vector4_f32[3] = powf(V1.vector4_f32[3], V2.vector4_f32[3]);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_setr_ps(
+        powf(XMVectorGetX(V1),XMVectorGetX(V2)),
+        powf(XMVectorGetY(V1),XMVectorGetY(V2)),
+        powf(XMVectorGetZ(V1),XMVectorGetZ(V2)),
+        powf(XMVectorGetW(V1),XMVectorGetW(V2)));
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorPow
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_) || defined(_XM_SSE_INTRINSICS_)
+
+    return XMVectorPowEst(V1, V2);
+
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorAbs
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult = {
+        fabsf(V.vector4_f32[0]),
+        fabsf(V.vector4_f32[1]),
+        fabsf(V.vector4_f32[2]),
+        fabsf(V.vector4_f32[3])
+    };
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_setzero_ps();
+    vResult = _mm_sub_ps(vResult,V);
+    vResult = _mm_max_ps(vResult,V);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorMod
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Reciprocal;
+    XMVECTOR Quotient;
+    XMVECTOR Result;
+
+    // V1 % V2 = V1 - V2 * truncate(V1 / V2)
+    Reciprocal = XMVectorReciprocal(V2);
+    Quotient = XMVectorMultiply(V1, Reciprocal);
+    Quotient = XMVectorTruncate(Quotient);
+    Result = XMVectorNegativeMultiplySubtract(V2, Quotient, V1);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_div_ps(V1, V2);
+    vResult = XMVectorTruncate(vResult);
+    vResult = _mm_mul_ps(vResult,V2);
+    vResult = _mm_sub_ps(V1,vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorModAngles
+(
+    FXMVECTOR Angles
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V;
+    XMVECTOR Result;
+
+    // Modulo the range of the given angles such that -XM_PI <= Angles < XM_PI
+    V = XMVectorMultiply(Angles, g_XMReciprocalTwoPi.v);
+    V = XMVectorRound(V);
+    Result = XMVectorNegativeMultiplySubtract(g_XMTwoPi.v, V, Angles);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Modulo the range of the given angles such that -XM_PI <= Angles < XM_PI
+    XMVECTOR vResult = _mm_mul_ps(Angles,g_XMReciprocalTwoPi);
+    // Use the inline function due to complexity for rounding
+    vResult = XMVectorRound(vResult);
+    vResult = _mm_mul_ps(vResult,g_XMTwoPi);
+    vResult = _mm_sub_ps(Angles,vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorSin
+(
+    FXMVECTOR V
+)
+{
+
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V1, V2, V3, V5, V7, V9, V11, V13, V15, V17, V19, V21, V23;
+    XMVECTOR S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11;
+    XMVECTOR Result;
+
+    V1 = XMVectorModAngles(V);
+
+    // sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! + V^9 / 9! - V^11 / 11! + V^13 / 13! - 
+    //           V^15 / 15! + V^17 / 17! - V^19 / 19! + V^21 / 21! - V^23 / 23! (for -PI <= V < PI)
+    V2  = XMVectorMultiply(V1, V1);
+    V3  = XMVectorMultiply(V2, V1);
+    V5  = XMVectorMultiply(V3, V2);
+    V7  = XMVectorMultiply(V5, V2);
+    V9  = XMVectorMultiply(V7, V2);
+    V11 = XMVectorMultiply(V9, V2);
+    V13 = XMVectorMultiply(V11, V2);
+    V15 = XMVectorMultiply(V13, V2);
+    V17 = XMVectorMultiply(V15, V2);
+    V19 = XMVectorMultiply(V17, V2);
+    V21 = XMVectorMultiply(V19, V2);
+    V23 = XMVectorMultiply(V21, V2);
+
+    S1  = XMVectorSplatY(g_XMSinCoefficients0.v);
+    S2  = XMVectorSplatZ(g_XMSinCoefficients0.v);
+    S3  = XMVectorSplatW(g_XMSinCoefficients0.v);
+    S4  = XMVectorSplatX(g_XMSinCoefficients1.v);
+    S5  = XMVectorSplatY(g_XMSinCoefficients1.v);
+    S6  = XMVectorSplatZ(g_XMSinCoefficients1.v);
+    S7  = XMVectorSplatW(g_XMSinCoefficients1.v);
+    S8  = XMVectorSplatX(g_XMSinCoefficients2.v);
+    S9  = XMVectorSplatY(g_XMSinCoefficients2.v);
+    S10 = XMVectorSplatZ(g_XMSinCoefficients2.v);
+    S11 = XMVectorSplatW(g_XMSinCoefficients2.v);
+
+    Result = XMVectorMultiplyAdd(S1, V3, V1);
+    Result = XMVectorMultiplyAdd(S2, V5, Result);
+    Result = XMVectorMultiplyAdd(S3, V7, Result);
+    Result = XMVectorMultiplyAdd(S4, V9, Result);
+    Result = XMVectorMultiplyAdd(S5, V11, Result);
+    Result = XMVectorMultiplyAdd(S6, V13, Result);
+    Result = XMVectorMultiplyAdd(S7, V15, Result);
+    Result = XMVectorMultiplyAdd(S8, V17, Result);
+    Result = XMVectorMultiplyAdd(S9, V19, Result);
+    Result = XMVectorMultiplyAdd(S10, V21, Result);
+    Result = XMVectorMultiplyAdd(S11, V23, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Force the value within the bounds of pi
+    XMVECTOR vResult = XMVectorModAngles(V);
+    // Each on is V to the "num" power
+    // V2 = V1^2
+    XMVECTOR V2  = _mm_mul_ps(vResult,vResult);
+    // V1^3
+    XMVECTOR vPower = _mm_mul_ps(vResult,V2);    
+    XMVECTOR vConstants = _mm_load_ps1(&g_XMSinCoefficients0.f[1]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^5
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMSinCoefficients0.f[2]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^7
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMSinCoefficients0.f[3]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^9
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMSinCoefficients1.f[0]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^11
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMSinCoefficients1.f[1]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^13
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMSinCoefficients1.f[2]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^15
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMSinCoefficients1.f[3]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^17
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMSinCoefficients2.f[0]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^19
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMSinCoefficients2.f[1]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^21
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMSinCoefficients2.f[2]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^23
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMSinCoefficients2.f[3]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorCos
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V1, V2, V4, V6, V8, V10, V12, V14, V16, V18, V20, V22;
+    XMVECTOR C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11;
+    XMVECTOR Result;
+
+    V1 = XMVectorModAngles(V);
+
+    // cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! + V^8 / 8! - V^10 / 10! + V^12 / 12! - 
+    //           V^14 / 14! + V^16 / 16! - V^18 / 18! + V^20 / 20! - V^22 / 22! (for -PI <= V < PI)
+    V2 = XMVectorMultiply(V1, V1);
+    V4 = XMVectorMultiply(V2, V2);
+    V6 = XMVectorMultiply(V4, V2);
+    V8 = XMVectorMultiply(V4, V4);
+    V10 = XMVectorMultiply(V6, V4);
+    V12 = XMVectorMultiply(V6, V6);
+    V14 = XMVectorMultiply(V8, V6);
+    V16 = XMVectorMultiply(V8, V8);
+    V18 = XMVectorMultiply(V10, V8);
+    V20 = XMVectorMultiply(V10, V10);
+    V22 = XMVectorMultiply(V12, V10);
+
+    C1 = XMVectorSplatY(g_XMCosCoefficients0.v);
+    C2 = XMVectorSplatZ(g_XMCosCoefficients0.v);
+    C3 = XMVectorSplatW(g_XMCosCoefficients0.v);
+    C4 = XMVectorSplatX(g_XMCosCoefficients1.v);
+    C5 = XMVectorSplatY(g_XMCosCoefficients1.v);
+    C6 = XMVectorSplatZ(g_XMCosCoefficients1.v);
+    C7 = XMVectorSplatW(g_XMCosCoefficients1.v);
+    C8 = XMVectorSplatX(g_XMCosCoefficients2.v);
+    C9 = XMVectorSplatY(g_XMCosCoefficients2.v);
+    C10 = XMVectorSplatZ(g_XMCosCoefficients2.v);
+    C11 = XMVectorSplatW(g_XMCosCoefficients2.v);
+
+    Result = XMVectorMultiplyAdd(C1, V2, g_XMOne.v);
+    Result = XMVectorMultiplyAdd(C2, V4, Result);
+    Result = XMVectorMultiplyAdd(C3, V6, Result);
+    Result = XMVectorMultiplyAdd(C4, V8, Result);
+    Result = XMVectorMultiplyAdd(C5, V10, Result);
+    Result = XMVectorMultiplyAdd(C6, V12, Result);
+    Result = XMVectorMultiplyAdd(C7, V14, Result);
+    Result = XMVectorMultiplyAdd(C8, V16, Result);
+    Result = XMVectorMultiplyAdd(C9, V18, Result);
+    Result = XMVectorMultiplyAdd(C10, V20, Result);
+    Result = XMVectorMultiplyAdd(C11, V22, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Force the value within the bounds of pi
+    XMVECTOR V2 = XMVectorModAngles(V);
+    // Each on is V to the "num" power
+    // V2 = V1^2
+    V2  = _mm_mul_ps(V2,V2);
+    // V^2
+    XMVECTOR vConstants = _mm_load_ps1(&g_XMCosCoefficients0.f[1]);
+    vConstants = _mm_mul_ps(vConstants,V2);
+    XMVECTOR vResult = _mm_add_ps(vConstants,g_XMOne);
+
+    // V^4
+    XMVECTOR vPower = _mm_mul_ps(V2,V2);
+    vConstants = _mm_load_ps1(&g_XMCosCoefficients0.f[2]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^6
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMCosCoefficients0.f[3]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^8
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMCosCoefficients1.f[0]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^10
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMCosCoefficients1.f[1]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^12
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMCosCoefficients1.f[2]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^14
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMCosCoefficients1.f[3]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^16
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMCosCoefficients2.f[0]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^18
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMCosCoefficients2.f[1]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^20
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMCosCoefficients2.f[2]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    // V^22
+    vPower = _mm_mul_ps(vPower,V2);
+    vConstants = _mm_load_ps1(&g_XMCosCoefficients2.f[3]);
+    vConstants = _mm_mul_ps(vConstants,vPower);
+    vResult = _mm_add_ps(vResult,vConstants);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE VOID XMVectorSinCos
+(
+    XMVECTOR* pSin, 
+    XMVECTOR* pCos, 
+    FXMVECTOR  V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13;
+    XMVECTOR V14, V15, V16, V17, V18, V19, V20, V21, V22, V23;
+    XMVECTOR S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11;
+    XMVECTOR C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11;
+    XMVECTOR Sin, Cos;
+
+    XMASSERT(pSin);
+    XMASSERT(pCos);
+
+    V1 = XMVectorModAngles(V);
+
+    // sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! + V^9 / 9! - V^11 / 11! + V^13 / 13! - 
+    //           V^15 / 15! + V^17 / 17! - V^19 / 19! + V^21 / 21! - V^23 / 23! (for -PI <= V < PI)
+    // cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! + V^8 / 8! - V^10 / 10! + V^12 / 12! - 
+    //           V^14 / 14! + V^16 / 16! - V^18 / 18! + V^20 / 20! - V^22 / 22! (for -PI <= V < PI)
+
+    V2 = XMVectorMultiply(V1, V1);
+    V3 = XMVectorMultiply(V2, V1);
+    V4 = XMVectorMultiply(V2, V2);
+    V5 = XMVectorMultiply(V3, V2);
+    V6 = XMVectorMultiply(V3, V3);
+    V7 = XMVectorMultiply(V4, V3);
+    V8 = XMVectorMultiply(V4, V4);
+    V9 = XMVectorMultiply(V5, V4);
+    V10 = XMVectorMultiply(V5, V5);
+    V11 = XMVectorMultiply(V6, V5);
+    V12 = XMVectorMultiply(V6, V6);
+    V13 = XMVectorMultiply(V7, V6);
+    V14 = XMVectorMultiply(V7, V7);
+    V15 = XMVectorMultiply(V8, V7);
+    V16 = XMVectorMultiply(V8, V8);
+    V17 = XMVectorMultiply(V9, V8);
+    V18 = XMVectorMultiply(V9, V9);
+    V19 = XMVectorMultiply(V10, V9);
+    V20 = XMVectorMultiply(V10, V10);
+    V21 = XMVectorMultiply(V11, V10);
+    V22 = XMVectorMultiply(V11, V11);
+    V23 = XMVectorMultiply(V12, V11);
+
+    S1  = XMVectorSplatY(g_XMSinCoefficients0.v);
+    S2  = XMVectorSplatZ(g_XMSinCoefficients0.v);
+    S3  = XMVectorSplatW(g_XMSinCoefficients0.v);
+    S4  = XMVectorSplatX(g_XMSinCoefficients1.v);
+    S5  = XMVectorSplatY(g_XMSinCoefficients1.v);
+    S6  = XMVectorSplatZ(g_XMSinCoefficients1.v);
+    S7  = XMVectorSplatW(g_XMSinCoefficients1.v);
+    S8  = XMVectorSplatX(g_XMSinCoefficients2.v);
+    S9  = XMVectorSplatY(g_XMSinCoefficients2.v);
+    S10  = XMVectorSplatZ(g_XMSinCoefficients2.v);
+    S11  = XMVectorSplatW(g_XMSinCoefficients2.v);
+
+    C1 = XMVectorSplatY(g_XMCosCoefficients0.v);
+    C2 = XMVectorSplatZ(g_XMCosCoefficients0.v);
+    C3 = XMVectorSplatW(g_XMCosCoefficients0.v);
+    C4 = XMVectorSplatX(g_XMCosCoefficients1.v);
+    C5 = XMVectorSplatY(g_XMCosCoefficients1.v);
+    C6 = XMVectorSplatZ(g_XMCosCoefficients1.v);
+    C7 = XMVectorSplatW(g_XMCosCoefficients1.v);
+    C8 = XMVectorSplatX(g_XMCosCoefficients2.v);
+    C9 = XMVectorSplatY(g_XMCosCoefficients2.v);
+    C10 = XMVectorSplatZ(g_XMCosCoefficients2.v);
+    C11 = XMVectorSplatW(g_XMCosCoefficients2.v);
+
+    Sin = XMVectorMultiplyAdd(S1, V3, V1);
+    Sin = XMVectorMultiplyAdd(S2, V5, Sin);
+    Sin = XMVectorMultiplyAdd(S3, V7, Sin);
+    Sin = XMVectorMultiplyAdd(S4, V9, Sin);
+    Sin = XMVectorMultiplyAdd(S5, V11, Sin);
+    Sin = XMVectorMultiplyAdd(S6, V13, Sin);
+    Sin = XMVectorMultiplyAdd(S7, V15, Sin);
+    Sin = XMVectorMultiplyAdd(S8, V17, Sin);
+    Sin = XMVectorMultiplyAdd(S9, V19, Sin);
+    Sin = XMVectorMultiplyAdd(S10, V21, Sin);
+    Sin = XMVectorMultiplyAdd(S11, V23, Sin);
+
+    Cos = XMVectorMultiplyAdd(C1, V2, g_XMOne.v);
+    Cos = XMVectorMultiplyAdd(C2, V4, Cos);
+    Cos = XMVectorMultiplyAdd(C3, V6, Cos);
+    Cos = XMVectorMultiplyAdd(C4, V8, Cos);
+    Cos = XMVectorMultiplyAdd(C5, V10, Cos);
+    Cos = XMVectorMultiplyAdd(C6, V12, Cos);
+    Cos = XMVectorMultiplyAdd(C7, V14, Cos);
+    Cos = XMVectorMultiplyAdd(C8, V16, Cos);
+    Cos = XMVectorMultiplyAdd(C9, V18, Cos);
+    Cos = XMVectorMultiplyAdd(C10, V20, Cos);
+    Cos = XMVectorMultiplyAdd(C11, V22, Cos);
+
+    *pSin = Sin;
+    *pCos = Cos;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pSin);
+    XMASSERT(pCos);
+    XMVECTOR V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13;
+    XMVECTOR V14, V15, V16, V17, V18, V19, V20, V21, V22, V23;
+    XMVECTOR S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11;
+    XMVECTOR C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11;
+    XMVECTOR Sin, Cos;
+
+    V1 = XMVectorModAngles(V);
+
+    // sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! + V^9 / 9! - V^11 / 11! + V^13 / 13! - 
+    //           V^15 / 15! + V^17 / 17! - V^19 / 19! + V^21 / 21! - V^23 / 23! (for -PI <= V < PI)
+    // cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! + V^8 / 8! - V^10 / 10! + V^12 / 12! - 
+    //           V^14 / 14! + V^16 / 16! - V^18 / 18! + V^20 / 20! - V^22 / 22! (for -PI <= V < PI)
+
+    V2 = XMVectorMultiply(V1, V1);
+    V3 = XMVectorMultiply(V2, V1);
+    V4 = XMVectorMultiply(V2, V2);
+    V5 = XMVectorMultiply(V3, V2);
+    V6 = XMVectorMultiply(V3, V3);
+    V7 = XMVectorMultiply(V4, V3);
+    V8 = XMVectorMultiply(V4, V4);
+    V9 = XMVectorMultiply(V5, V4);
+    V10 = XMVectorMultiply(V5, V5);
+    V11 = XMVectorMultiply(V6, V5);
+    V12 = XMVectorMultiply(V6, V6);
+    V13 = XMVectorMultiply(V7, V6);
+    V14 = XMVectorMultiply(V7, V7);
+    V15 = XMVectorMultiply(V8, V7);
+    V16 = XMVectorMultiply(V8, V8);
+    V17 = XMVectorMultiply(V9, V8);
+    V18 = XMVectorMultiply(V9, V9);
+    V19 = XMVectorMultiply(V10, V9);
+    V20 = XMVectorMultiply(V10, V10);
+    V21 = XMVectorMultiply(V11, V10);
+    V22 = XMVectorMultiply(V11, V11);
+    V23 = XMVectorMultiply(V12, V11);
+
+    S1  = _mm_load_ps1(&g_XMSinCoefficients0.f[1]);
+    S2  = _mm_load_ps1(&g_XMSinCoefficients0.f[2]);
+    S3  = _mm_load_ps1(&g_XMSinCoefficients0.f[3]);
+    S4  = _mm_load_ps1(&g_XMSinCoefficients1.f[0]);
+    S5  = _mm_load_ps1(&g_XMSinCoefficients1.f[1]);
+    S6  = _mm_load_ps1(&g_XMSinCoefficients1.f[2]);
+    S7  = _mm_load_ps1(&g_XMSinCoefficients1.f[3]);
+    S8  = _mm_load_ps1(&g_XMSinCoefficients2.f[0]);
+    S9  = _mm_load_ps1(&g_XMSinCoefficients2.f[1]);
+    S10  = _mm_load_ps1(&g_XMSinCoefficients2.f[2]);
+    S11  = _mm_load_ps1(&g_XMSinCoefficients2.f[3]);
+
+    C1 = _mm_load_ps1(&g_XMCosCoefficients0.f[1]);
+    C2 = _mm_load_ps1(&g_XMCosCoefficients0.f[2]);
+    C3 = _mm_load_ps1(&g_XMCosCoefficients0.f[3]);
+    C4 = _mm_load_ps1(&g_XMCosCoefficients1.f[0]);
+    C5 = _mm_load_ps1(&g_XMCosCoefficients1.f[1]);
+    C6 = _mm_load_ps1(&g_XMCosCoefficients1.f[2]);
+    C7 = _mm_load_ps1(&g_XMCosCoefficients1.f[3]);
+    C8 = _mm_load_ps1(&g_XMCosCoefficients2.f[0]);
+    C9 = _mm_load_ps1(&g_XMCosCoefficients2.f[1]);
+    C10 = _mm_load_ps1(&g_XMCosCoefficients2.f[2]);
+    C11 = _mm_load_ps1(&g_XMCosCoefficients2.f[3]);
+
+    S1 = _mm_mul_ps(S1,V3);
+    Sin = _mm_add_ps(S1,V1);
+    Sin = XMVectorMultiplyAdd(S2, V5, Sin);
+    Sin = XMVectorMultiplyAdd(S3, V7, Sin);
+    Sin = XMVectorMultiplyAdd(S4, V9, Sin);
+    Sin = XMVectorMultiplyAdd(S5, V11, Sin);
+    Sin = XMVectorMultiplyAdd(S6, V13, Sin);
+    Sin = XMVectorMultiplyAdd(S7, V15, Sin);
+    Sin = XMVectorMultiplyAdd(S8, V17, Sin);
+    Sin = XMVectorMultiplyAdd(S9, V19, Sin);
+    Sin = XMVectorMultiplyAdd(S10, V21, Sin);
+    Sin = XMVectorMultiplyAdd(S11, V23, Sin);
+
+    Cos = _mm_mul_ps(C1,V2);
+    Cos = _mm_add_ps(Cos,g_XMOne);
+    Cos = XMVectorMultiplyAdd(C2, V4, Cos);
+    Cos = XMVectorMultiplyAdd(C3, V6, Cos);
+    Cos = XMVectorMultiplyAdd(C4, V8, Cos);
+    Cos = XMVectorMultiplyAdd(C5, V10, Cos);
+    Cos = XMVectorMultiplyAdd(C6, V12, Cos);
+    Cos = XMVectorMultiplyAdd(C7, V14, Cos);
+    Cos = XMVectorMultiplyAdd(C8, V16, Cos);
+    Cos = XMVectorMultiplyAdd(C9, V18, Cos);
+    Cos = XMVectorMultiplyAdd(C10, V20, Cos);
+    Cos = XMVectorMultiplyAdd(C11, V22, Cos);
+
+    *pSin = Sin;
+    *pCos = Cos;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorTan
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    // Cody and Waite algorithm to compute tangent.
+
+    XMVECTOR VA, VB, VC, VC2;
+    XMVECTOR T0, T1, T2, T3, T4, T5, T6, T7;
+    XMVECTOR C0, C1, TwoDivPi, Epsilon;
+    XMVECTOR N, D;
+    XMVECTOR R0, R1;
+    XMVECTOR VIsZero, VCNearZero, VBIsEven;
+    XMVECTOR Zero;
+    XMVECTOR Result;
+    UINT     i;
+    static CONST XMVECTOR TanCoefficients0 = {1.0f, -4.667168334e-1f, 2.566383229e-2f, -3.118153191e-4f};
+    static CONST XMVECTOR TanCoefficients1 = {4.981943399e-7f, -1.333835001e-1f, 3.424887824e-3f, -1.786170734e-5f};
+    static CONST XMVECTOR TanConstants = {1.570796371f, 6.077100628e-11f, 0.000244140625f, 2.0f / XM_PI};
+    static CONST XMVECTORU32 Mask = {0x1, 0x1, 0x1, 0x1};
+
+    TwoDivPi = XMVectorSplatW(TanConstants);
+
+    Zero = XMVectorZero();
+
+    C0 = XMVectorSplatX(TanConstants);
+    C1 = XMVectorSplatY(TanConstants);
+    Epsilon = XMVectorSplatZ(TanConstants);
+
+    VA = XMVectorMultiply(V, TwoDivPi);
+
+    VA = XMVectorRound(VA);
+
+    VC = XMVectorNegativeMultiplySubtract(VA, C0, V);
+
+    VB = XMVectorAbs(VA);
+
+    VC = XMVectorNegativeMultiplySubtract(VA, C1, VC);
+
+    for (i = 0; i < 4; i++)
+    {
+        VB.vector4_u32[i] = (UINT)VB.vector4_f32[i];
+    }
+
+    VC2 = XMVectorMultiply(VC, VC);
+
+    T7 = XMVectorSplatW(TanCoefficients1);
+    T6 = XMVectorSplatZ(TanCoefficients1);
+    T4 = XMVectorSplatX(TanCoefficients1);
+    T3 = XMVectorSplatW(TanCoefficients0);
+    T5 = XMVectorSplatY(TanCoefficients1);
+    T2 = XMVectorSplatZ(TanCoefficients0);
+    T1 = XMVectorSplatY(TanCoefficients0);
+    T0 = XMVectorSplatX(TanCoefficients0);
+
+    VBIsEven = XMVectorAndInt(VB, Mask.v);
+    VBIsEven = XMVectorEqualInt(VBIsEven, Zero);
+
+    N = XMVectorMultiplyAdd(VC2, T7, T6);
+    D = XMVectorMultiplyAdd(VC2, T4, T3);
+    N = XMVectorMultiplyAdd(VC2, N, T5);
+    D = XMVectorMultiplyAdd(VC2, D, T2);
+    N = XMVectorMultiply(VC2, N);
+    D = XMVectorMultiplyAdd(VC2, D, T1);
+    N = XMVectorMultiplyAdd(VC, N, VC);
+    VCNearZero = XMVectorInBounds(VC, Epsilon);
+    D = XMVectorMultiplyAdd(VC2, D, T0);
+
+    N = XMVectorSelect(N, VC, VCNearZero);
+    D = XMVectorSelect(D, g_XMOne.v, VCNearZero);
+
+    R0 = XMVectorNegate(N);
+    R1 = XMVectorReciprocal(D);
+    R0 = XMVectorReciprocal(R0);
+    R1 = XMVectorMultiply(N, R1);
+    R0 = XMVectorMultiply(D, R0);
+
+    VIsZero = XMVectorEqual(V, Zero);
+
+    Result = XMVectorSelect(R0, R1, VBIsEven);
+
+    Result = XMVectorSelect(Result, Zero, VIsZero);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Cody and Waite algorithm to compute tangent.
+
+    XMVECTOR VA, VB, VC, VC2;
+    XMVECTOR T0, T1, T2, T3, T4, T5, T6, T7;
+    XMVECTOR C0, C1, TwoDivPi, Epsilon;
+    XMVECTOR N, D;
+    XMVECTOR R0, R1;
+    XMVECTOR VIsZero, VCNearZero, VBIsEven;
+    XMVECTOR Zero;
+    XMVECTOR Result;
+    static CONST XMVECTORF32 TanCoefficients0 = {1.0f, -4.667168334e-1f, 2.566383229e-2f, -3.118153191e-4f};
+    static CONST XMVECTORF32 TanCoefficients1 = {4.981943399e-7f, -1.333835001e-1f, 3.424887824e-3f, -1.786170734e-5f};
+    static CONST XMVECTORF32 TanConstants = {1.570796371f, 6.077100628e-11f, 0.000244140625f, 2.0f / XM_PI};
+    static CONST XMVECTORI32 Mask = {0x1, 0x1, 0x1, 0x1};
+
+    TwoDivPi = XMVectorSplatW(TanConstants);
+
+    Zero = XMVectorZero();
+
+    C0 = XMVectorSplatX(TanConstants);
+    C1 = XMVectorSplatY(TanConstants);
+    Epsilon = XMVectorSplatZ(TanConstants);
+
+    VA = XMVectorMultiply(V, TwoDivPi);
+
+    VA = XMVectorRound(VA);
+
+    VC = XMVectorNegativeMultiplySubtract(VA, C0, V);
+
+    VB = XMVectorAbs(VA);
+
+    VC = XMVectorNegativeMultiplySubtract(VA, C1, VC);
+
+    reinterpret_cast<__m128i *>(&VB)[0] = _mm_cvttps_epi32(VB);
+
+    VC2 = XMVectorMultiply(VC, VC);
+
+    T7 = XMVectorSplatW(TanCoefficients1);
+    T6 = XMVectorSplatZ(TanCoefficients1);
+    T4 = XMVectorSplatX(TanCoefficients1);
+    T3 = XMVectorSplatW(TanCoefficients0);
+    T5 = XMVectorSplatY(TanCoefficients1);
+    T2 = XMVectorSplatZ(TanCoefficients0);
+    T1 = XMVectorSplatY(TanCoefficients0);
+    T0 = XMVectorSplatX(TanCoefficients0);
+
+    VBIsEven = XMVectorAndInt(VB,Mask);
+    VBIsEven = XMVectorEqualInt(VBIsEven, Zero);
+
+    N = XMVectorMultiplyAdd(VC2, T7, T6);
+    D = XMVectorMultiplyAdd(VC2, T4, T3);
+    N = XMVectorMultiplyAdd(VC2, N, T5);
+    D = XMVectorMultiplyAdd(VC2, D, T2);
+    N = XMVectorMultiply(VC2, N);
+    D = XMVectorMultiplyAdd(VC2, D, T1);
+    N = XMVectorMultiplyAdd(VC, N, VC);
+    VCNearZero = XMVectorInBounds(VC, Epsilon);
+    D = XMVectorMultiplyAdd(VC2, D, T0);
+
+    N = XMVectorSelect(N, VC, VCNearZero);
+    D = XMVectorSelect(D, g_XMOne, VCNearZero);
+    R0 = XMVectorNegate(N);
+    R1 = _mm_div_ps(N,D);
+    R0 = _mm_div_ps(D,R0);
+    VIsZero = XMVectorEqual(V, Zero);
+    Result = XMVectorSelect(R0, R1, VBIsEven);
+    Result = XMVectorSelect(Result, Zero, VIsZero);
+
+    return Result;
+
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorSinH
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V1, V2;
+    XMVECTOR E1, E2;
+    XMVECTOR Result;
+    static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
+
+    V1 = XMVectorMultiplyAdd(V, Scale.v, g_XMNegativeOne.v);
+    V2 = XMVectorNegativeMultiplySubtract(V, Scale.v, g_XMNegativeOne.v);
+
+    E1 = XMVectorExp(V1);
+    E2 = XMVectorExp(V2);
+
+    Result = XMVectorSubtract(E1, E2);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR V1, V2;
+    XMVECTOR E1, E2;
+    XMVECTOR Result;
+    static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
+
+    V1 = _mm_mul_ps(V, Scale);
+    V1 = _mm_add_ps(V1,g_XMNegativeOne);
+    V2 = _mm_mul_ps(V, Scale);
+    V2 = _mm_sub_ps(g_XMNegativeOne,V2);
+    E1 = XMVectorExp(V1);
+    E2 = XMVectorExp(V2);
+
+    Result = _mm_sub_ps(E1, E2);
+
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorCosH
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V1, V2;
+    XMVECTOR E1, E2;
+    XMVECTOR Result;
+    static CONST XMVECTOR Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
+
+    V1 = XMVectorMultiplyAdd(V, Scale, g_XMNegativeOne.v);
+    V2 = XMVectorNegativeMultiplySubtract(V, Scale, g_XMNegativeOne.v);
+
+    E1 = XMVectorExp(V1);
+    E2 = XMVectorExp(V2);
+
+    Result = XMVectorAdd(E1, E2);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR V1, V2;
+    XMVECTOR E1, E2;
+    XMVECTOR Result;
+    static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
+
+    V1 = _mm_mul_ps(V,Scale);
+    V1 = _mm_add_ps(V1,g_XMNegativeOne);
+    V2 = _mm_mul_ps(V, Scale);
+    V2 = _mm_sub_ps(g_XMNegativeOne,V2);
+    E1 = XMVectorExp(V1);
+    E2 = XMVectorExp(V2);
+    Result = _mm_add_ps(E1, E2);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorTanH
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR E;
+    XMVECTOR Result;
+    static CONST XMVECTORF32 Scale = {2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f}; // 2.0f / ln(2.0f)
+
+    E = XMVectorMultiply(V, Scale.v);
+    E = XMVectorExp(E);
+    E = XMVectorMultiplyAdd(E, g_XMOneHalf.v, g_XMOneHalf.v);
+    E = XMVectorReciprocal(E);
+
+    Result = XMVectorSubtract(g_XMOne.v, E);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    static CONST XMVECTORF32 Scale = {2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f}; // 2.0f / ln(2.0f)
+
+    XMVECTOR E = _mm_mul_ps(V, Scale);
+    E = XMVectorExp(E);
+    E = _mm_mul_ps(E,g_XMOneHalf);
+    E = _mm_add_ps(E,g_XMOneHalf);
+    E = XMVectorReciprocal(E);
+    E = _mm_sub_ps(g_XMOne, E);
+    return E;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorASin
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V2, V3, AbsV;
+    XMVECTOR C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11;
+    XMVECTOR R0, R1, R2, R3, R4;
+    XMVECTOR OneMinusAbsV;
+    XMVECTOR Rsq;
+    XMVECTOR Result;
+    static CONST XMVECTOR OnePlusEpsilon = {1.00000011921f, 1.00000011921f, 1.00000011921f, 1.00000011921f};
+
+    // asin(V) = V * (C0 + C1 * V + C2 * V^2 + C3 * V^3 + C4 * V^4 + C5 * V^5) + (1 - V) * rsq(1 - V) * 
+    //           V * (C6 + C7 * V + C8 * V^2 + C9 * V^3 + C10 * V^4 + C11 * V^5)
+
+    AbsV = XMVectorAbs(V);
+
+    V2 = XMVectorMultiply(V, V);
+    V3 = XMVectorMultiply(V2, AbsV);
+
+    R4 = XMVectorNegativeMultiplySubtract(AbsV, V, V);
+
+    OneMinusAbsV = XMVectorSubtract(OnePlusEpsilon, AbsV);
+    Rsq = XMVectorReciprocalSqrt(OneMinusAbsV);
+
+    C0 = XMVectorSplatX(g_XMASinCoefficients0.v);
+    C1 = XMVectorSplatY(g_XMASinCoefficients0.v);
+    C2 = XMVectorSplatZ(g_XMASinCoefficients0.v);
+    C3 = XMVectorSplatW(g_XMASinCoefficients0.v);
+
+    C4 = XMVectorSplatX(g_XMASinCoefficients1.v);
+    C5 = XMVectorSplatY(g_XMASinCoefficients1.v);
+    C6 = XMVectorSplatZ(g_XMASinCoefficients1.v);
+    C7 = XMVectorSplatW(g_XMASinCoefficients1.v);
+
+    C8 = XMVectorSplatX(g_XMASinCoefficients2.v);
+    C9 = XMVectorSplatY(g_XMASinCoefficients2.v);
+    C10 = XMVectorSplatZ(g_XMASinCoefficients2.v);
+    C11 = XMVectorSplatW(g_XMASinCoefficients2.v);
+
+    R0 = XMVectorMultiplyAdd(C3, AbsV, C7);
+    R1 = XMVectorMultiplyAdd(C1, AbsV, C5);
+    R2 = XMVectorMultiplyAdd(C2, AbsV, C6);
+    R3 = XMVectorMultiplyAdd(C0, AbsV, C4);
+
+    R0 = XMVectorMultiplyAdd(R0, AbsV, C11);
+    R1 = XMVectorMultiplyAdd(R1, AbsV, C9);
+    R2 = XMVectorMultiplyAdd(R2, AbsV, C10);
+    R3 = XMVectorMultiplyAdd(R3, AbsV, C8);
+
+    R0 = XMVectorMultiplyAdd(R2, V3, R0);
+    R1 = XMVectorMultiplyAdd(R3, V3, R1);
+
+    R0 = XMVectorMultiply(V, R0);
+    R1 = XMVectorMultiply(R4, R1);
+
+    Result = XMVectorMultiplyAdd(R1, Rsq, R0);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    static CONST XMVECTORF32 OnePlusEpsilon = {1.00000011921f, 1.00000011921f, 1.00000011921f, 1.00000011921f};
+
+    // asin(V) = V * (C0 + C1 * V + C2 * V^2 + C3 * V^3 + C4 * V^4 + C5 * V^5) + (1 - V) * rsq(1 - V) * 
+    //           V * (C6 + C7 * V + C8 * V^2 + C9 * V^3 + C10 * V^4 + C11 * V^5)
+    // Get abs(V)
+    XMVECTOR vAbsV = _mm_setzero_ps();
+    vAbsV = _mm_sub_ps(vAbsV,V);
+    vAbsV = _mm_max_ps(vAbsV,V);
+
+    XMVECTOR R0 = vAbsV;
+    XMVECTOR vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[3]);
+    R0 = _mm_mul_ps(R0,vConstants);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[3]);
+    R0 = _mm_add_ps(R0,vConstants);
+
+    XMVECTOR R1 = vAbsV;
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[1]);
+    R1 = _mm_mul_ps(R1,vConstants);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[1]);
+    R1 = _mm_add_ps(R1, vConstants);
+
+    XMVECTOR R2 = vAbsV;
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[2]);
+    R2 = _mm_mul_ps(R2,vConstants);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[2]);
+    R2 = _mm_add_ps(R2, vConstants);
+
+    XMVECTOR R3 = vAbsV;
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[0]);
+    R3 = _mm_mul_ps(R3,vConstants);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[0]);
+    R3 = _mm_add_ps(R3, vConstants);
+
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[3]);
+    R0 = _mm_mul_ps(R0,vAbsV);
+    R0 = _mm_add_ps(R0,vConstants);
+
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[1]);
+    R1 = _mm_mul_ps(R1,vAbsV);
+    R1 = _mm_add_ps(R1,vConstants);
+
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[2]);
+    R2 = _mm_mul_ps(R2,vAbsV);
+    R2 = _mm_add_ps(R2,vConstants);
+
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[0]);
+    R3 = _mm_mul_ps(R3,vAbsV);
+    R3 = _mm_add_ps(R3,vConstants);
+
+    // V3 = V^3
+    vConstants = _mm_mul_ps(V,V);
+    vConstants = _mm_mul_ps(vConstants, vAbsV);
+    // Mul by V^3
+    R2 = _mm_mul_ps(R2,vConstants);
+    R3 = _mm_mul_ps(R3,vConstants);
+    // Merge the results
+    R0 = _mm_add_ps(R0,R2);
+    R1 = _mm_add_ps(R1,R3);
+
+    R0 = _mm_mul_ps(R0,V);
+    // vConstants = V-(V^2 retaining sign)
+    vConstants = _mm_mul_ps(vAbsV, V);
+    vConstants = _mm_sub_ps(V,vConstants);
+    R1 = _mm_mul_ps(R1,vConstants);
+    vConstants = _mm_sub_ps(OnePlusEpsilon,vAbsV);
+    // Do NOT use rsqrt/mul. This needs the precision
+    vConstants = _mm_sqrt_ps(vConstants);
+    R1 = _mm_div_ps(R1,vConstants);
+    R0 = _mm_add_ps(R0,R1);
+    return R0;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorACos
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V2, V3, AbsV;
+    XMVECTOR C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11;
+    XMVECTOR R0, R1, R2, R3, R4;
+    XMVECTOR OneMinusAbsV;
+    XMVECTOR Rsq;
+    XMVECTOR Result;
+    static CONST XMVECTOR OnePlusEpsilon = {1.00000011921f, 1.00000011921f, 1.00000011921f, 1.00000011921f};
+
+    // acos(V) = PI / 2 - asin(V)
+
+    AbsV = XMVectorAbs(V);
+
+    V2 = XMVectorMultiply(V, V);
+    V3 = XMVectorMultiply(V2, AbsV);
+
+    R4 = XMVectorNegativeMultiplySubtract(AbsV, V, V);
+
+    OneMinusAbsV = XMVectorSubtract(OnePlusEpsilon, AbsV);
+    Rsq = XMVectorReciprocalSqrt(OneMinusAbsV);
+
+    C0 = XMVectorSplatX(g_XMASinCoefficients0.v);
+    C1 = XMVectorSplatY(g_XMASinCoefficients0.v);
+    C2 = XMVectorSplatZ(g_XMASinCoefficients0.v);
+    C3 = XMVectorSplatW(g_XMASinCoefficients0.v);
+
+    C4 = XMVectorSplatX(g_XMASinCoefficients1.v);
+    C5 = XMVectorSplatY(g_XMASinCoefficients1.v);
+    C6 = XMVectorSplatZ(g_XMASinCoefficients1.v);
+    C7 = XMVectorSplatW(g_XMASinCoefficients1.v);
+
+    C8 = XMVectorSplatX(g_XMASinCoefficients2.v);
+    C9 = XMVectorSplatY(g_XMASinCoefficients2.v);
+    C10 = XMVectorSplatZ(g_XMASinCoefficients2.v);
+    C11 = XMVectorSplatW(g_XMASinCoefficients2.v);
+
+    R0 = XMVectorMultiplyAdd(C3, AbsV, C7);
+    R1 = XMVectorMultiplyAdd(C1, AbsV, C5);
+    R2 = XMVectorMultiplyAdd(C2, AbsV, C6);
+    R3 = XMVectorMultiplyAdd(C0, AbsV, C4);
+
+    R0 = XMVectorMultiplyAdd(R0, AbsV, C11);
+    R1 = XMVectorMultiplyAdd(R1, AbsV, C9);
+    R2 = XMVectorMultiplyAdd(R2, AbsV, C10);
+    R3 = XMVectorMultiplyAdd(R3, AbsV, C8);
+
+    R0 = XMVectorMultiplyAdd(R2, V3, R0);
+    R1 = XMVectorMultiplyAdd(R3, V3, R1);
+
+    R0 = XMVectorMultiply(V, R0);
+    R1 = XMVectorMultiply(R4, R1);
+
+    Result = XMVectorMultiplyAdd(R1, Rsq, R0);
+
+    Result = XMVectorSubtract(g_XMHalfPi.v, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    static CONST XMVECTORF32 OnePlusEpsilon = {1.00000011921f, 1.00000011921f, 1.00000011921f, 1.00000011921f};
+    // Uses only 6 registers for good code on x86 targets
+    // acos(V) = PI / 2 - asin(V)
+    // Get abs(V)
+    XMVECTOR vAbsV = _mm_setzero_ps();
+    vAbsV = _mm_sub_ps(vAbsV,V);
+    vAbsV = _mm_max_ps(vAbsV,V);
+    // Perform the series in precision groups to
+    // retain precision across 20 bits. (3 bits of imprecision due to operations)
+    XMVECTOR R0 = vAbsV;
+    XMVECTOR vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[3]);
+    R0 = _mm_mul_ps(R0,vConstants);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[3]);
+    R0 = _mm_add_ps(R0,vConstants);
+    R0 = _mm_mul_ps(R0,vAbsV);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[3]);
+    R0 = _mm_add_ps(R0,vConstants);
+
+    XMVECTOR R1 = vAbsV;
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[1]);
+    R1 = _mm_mul_ps(R1,vConstants);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[1]);
+    R1 = _mm_add_ps(R1,vConstants);
+    R1 = _mm_mul_ps(R1, vAbsV);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[1]);
+    R1 = _mm_add_ps(R1,vConstants);
+
+    XMVECTOR R2 = vAbsV;
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[2]);
+    R2 = _mm_mul_ps(R2,vConstants);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[2]);
+    R2 = _mm_add_ps(R2,vConstants);
+    R2 = _mm_mul_ps(R2, vAbsV);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[2]);
+    R2 = _mm_add_ps(R2,vConstants);
+
+    XMVECTOR R3 = vAbsV;
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[0]);
+    R3 = _mm_mul_ps(R3,vConstants);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[0]);
+    R3 = _mm_add_ps(R3,vConstants);
+    R3 = _mm_mul_ps(R3, vAbsV);
+    vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[0]);
+    R3 = _mm_add_ps(R3,vConstants);
+
+    // vConstants = V^3
+    vConstants = _mm_mul_ps(V,V);
+    vConstants = _mm_mul_ps(vConstants,vAbsV);
+    R2 = _mm_mul_ps(R2,vConstants);
+    R3 = _mm_mul_ps(R3,vConstants);
+    // Add the pair of values together here to retain
+    // as much precision as possible
+    R0 = _mm_add_ps(R0,R2);
+    R1 = _mm_add_ps(R1,R3);
+
+    R0 = _mm_mul_ps(R0,V);
+    // vConstants = V-(V*abs(V))
+    vConstants = _mm_mul_ps(V,vAbsV);
+    vConstants = _mm_sub_ps(V,vConstants);
+    R1 = _mm_mul_ps(R1,vConstants);
+    // Episilon exists to allow 1.0 as an answer
+    vConstants = _mm_sub_ps(OnePlusEpsilon, vAbsV);
+    // Use sqrt instead of rsqrt for precision
+    vConstants = _mm_sqrt_ps(vConstants);
+    R1 = _mm_div_ps(R1,vConstants);
+    R1 = _mm_add_ps(R1,R0);
+    vConstants = _mm_sub_ps(g_XMHalfPi,R1);
+    return vConstants;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorATan
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    // Cody and Waite algorithm to compute inverse tangent.
+
+    XMVECTOR N, D;
+    XMVECTOR VF, G, ReciprocalF, AbsF, FA, FB;
+    XMVECTOR Sqrt3, Sqrt3MinusOne, TwoMinusSqrt3;
+    XMVECTOR HalfPi, OneThirdPi, OneSixthPi, Epsilon, MinV, MaxV;
+    XMVECTOR Zero;
+    XMVECTOR NegativeHalfPi;
+    XMVECTOR Angle1, Angle2;
+    XMVECTOR F_GT_One, F_GT_TwoMinusSqrt3, AbsF_LT_Epsilon, V_LT_Zero, V_GT_MaxV, V_LT_MinV;
+    XMVECTOR NegativeResult, Result;
+    XMVECTOR P0, P1, P2, P3, Q0, Q1, Q2, Q3;
+    static CONST XMVECTOR ATanConstants0 = {-1.3688768894e+1f, -2.0505855195e+1f, -8.4946240351f, -8.3758299368e-1f};
+    static CONST XMVECTOR ATanConstants1 = {4.1066306682e+1f, 8.6157349597e+1f, 5.9578436142e+1f, 1.5024001160e+1f};
+    static CONST XMVECTOR ATanConstants2 = {1.732050808f, 7.320508076e-1f, 2.679491924e-1f, 0.000244140625f}; // <sqrt(3), sqrt(3) - 1, 2 - sqrt(3), Epsilon>
+    static CONST XMVECTOR ATanConstants3 = {XM_PIDIV2, XM_PI / 3.0f, XM_PI / 6.0f, 8.507059173e+37f}; // <Pi / 2, Pi / 3, Pi / 6, MaxV>
+
+    Zero = XMVectorZero();
+
+    P0 = XMVectorSplatX(ATanConstants0);
+    P1 = XMVectorSplatY(ATanConstants0);
+    P2 = XMVectorSplatZ(ATanConstants0);
+    P3 = XMVectorSplatW(ATanConstants0);
+
+    Q0 = XMVectorSplatX(ATanConstants1);
+    Q1 = XMVectorSplatY(ATanConstants1);
+    Q2 = XMVectorSplatZ(ATanConstants1);
+    Q3 = XMVectorSplatW(ATanConstants1);
+
+    Sqrt3 = XMVectorSplatX(ATanConstants2);
+    Sqrt3MinusOne = XMVectorSplatY(ATanConstants2);
+    TwoMinusSqrt3 = XMVectorSplatZ(ATanConstants2);
+    Epsilon = XMVectorSplatW(ATanConstants2);
+
+    HalfPi = XMVectorSplatX(ATanConstants3);
+    OneThirdPi = XMVectorSplatY(ATanConstants3);
+    OneSixthPi = XMVectorSplatZ(ATanConstants3);
+    MaxV = XMVectorSplatW(ATanConstants3);
+
+    VF = XMVectorAbs(V);
+    ReciprocalF = XMVectorReciprocal(VF);
+
+    F_GT_One = XMVectorGreater(VF, g_XMOne.v);
+
+    VF = XMVectorSelect(VF, ReciprocalF, F_GT_One);
+    Angle1 = XMVectorSelect(Zero, HalfPi, F_GT_One);
+    Angle2 = XMVectorSelect(OneSixthPi, OneThirdPi, F_GT_One);
+
+    F_GT_TwoMinusSqrt3 = XMVectorGreater(VF, TwoMinusSqrt3);
+
+    FA = XMVectorMultiplyAdd(Sqrt3MinusOne, VF, VF);
+    FA = XMVectorAdd(FA, g_XMNegativeOne.v);
+    FB = XMVectorAdd(VF, Sqrt3);
+    FB = XMVectorReciprocal(FB);
+    FA = XMVectorMultiply(FA, FB);
+
+    VF = XMVectorSelect(VF, FA, F_GT_TwoMinusSqrt3);
+    Angle1 = XMVectorSelect(Angle1, Angle2, F_GT_TwoMinusSqrt3);
+
+    AbsF = XMVectorAbs(VF);
+    AbsF_LT_Epsilon = XMVectorLess(AbsF, Epsilon);
+
+    G = XMVectorMultiply(VF, VF);
+
+    D = XMVectorAdd(G, Q3);
+    D = XMVectorMultiplyAdd(D, G, Q2);
+    D = XMVectorMultiplyAdd(D, G, Q1);
+    D = XMVectorMultiplyAdd(D, G, Q0);
+    D = XMVectorReciprocal(D);
+
+    N = XMVectorMultiplyAdd(P3, G, P2);
+    N = XMVectorMultiplyAdd(N, G, P1);
+    N = XMVectorMultiplyAdd(N, G, P0);
+    N = XMVectorMultiply(N, G);
+    Result = XMVectorMultiply(N, D);
+
+    Result = XMVectorMultiplyAdd(Result, VF, VF);
+
+    Result = XMVectorSelect(Result, VF, AbsF_LT_Epsilon);
+
+    NegativeResult = XMVectorNegate(Result);
+    Result = XMVectorSelect(Result, NegativeResult, F_GT_One);
+
+    Result = XMVectorAdd(Result, Angle1);
+
+    V_LT_Zero = XMVectorLess(V, Zero);
+    NegativeResult = XMVectorNegate(Result);
+    Result = XMVectorSelect(Result, NegativeResult, V_LT_Zero);
+
+    MinV = XMVectorNegate(MaxV);
+    NegativeHalfPi = XMVectorNegate(HalfPi);
+    V_GT_MaxV = XMVectorGreater(V, MaxV);
+    V_LT_MinV = XMVectorLess(V, MinV);
+    Result = XMVectorSelect(Result, g_XMHalfPi.v, V_GT_MaxV);
+    Result = XMVectorSelect(Result, NegativeHalfPi, V_LT_MinV);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    static CONST XMVECTORF32 ATanConstants0 = {-1.3688768894e+1f, -2.0505855195e+1f, -8.4946240351f, -8.3758299368e-1f};
+    static CONST XMVECTORF32 ATanConstants1 = {4.1066306682e+1f, 8.6157349597e+1f, 5.9578436142e+1f, 1.5024001160e+1f};
+    static CONST XMVECTORF32 ATanConstants2 = {1.732050808f, 7.320508076e-1f, 2.679491924e-1f, 0.000244140625f}; // <sqrt(3), sqrt(3) - 1, 2 - sqrt(3), Epsilon>
+    static CONST XMVECTORF32 ATanConstants3 = {XM_PIDIV2, XM_PI / 3.0f, XM_PI / 6.0f, 8.507059173e+37f}; // <Pi / 2, Pi / 3, Pi / 6, MaxV>
+
+    XMVECTOR VF = XMVectorAbs(V);
+    XMVECTOR F_GT_One = _mm_cmpgt_ps(VF,g_XMOne);
+    XMVECTOR ReciprocalF = XMVectorReciprocal(VF);
+    VF = XMVectorSelect(VF, ReciprocalF, F_GT_One);
+    XMVECTOR Zero = XMVectorZero();
+    XMVECTOR HalfPi = _mm_load_ps1(&ATanConstants3.f[0]);
+    XMVECTOR Angle1 = XMVectorSelect(Zero, HalfPi, F_GT_One);
+    // Pi/3
+    XMVECTOR vConstants = _mm_load_ps1(&ATanConstants3.f[1]);
+    // Pi/6
+    XMVECTOR Angle2 = _mm_load_ps1(&ATanConstants3.f[2]);
+    Angle2 = XMVectorSelect(Angle2, vConstants, F_GT_One);
+
+    // 1-sqrt(3)
+    XMVECTOR FA = _mm_load_ps1(&ATanConstants2.f[1]);
+    FA = _mm_mul_ps(FA,VF);
+    FA = _mm_add_ps(FA,VF);
+    FA = _mm_add_ps(FA,g_XMNegativeOne);
+    // sqrt(3)
+    vConstants = _mm_load_ps1(&ATanConstants2.f[0]);
+    vConstants = _mm_add_ps(vConstants,VF);
+    FA = _mm_div_ps(FA,vConstants);
+
+    // 2-sqrt(3)
+    vConstants = _mm_load_ps1(&ATanConstants2.f[2]);
+    // >2-sqrt(3)?
+    vConstants = _mm_cmpgt_ps(VF,vConstants);
+    VF = XMVectorSelect(VF, FA, vConstants);
+    Angle1 = XMVectorSelect(Angle1, Angle2, vConstants);
+
+    XMVECTOR AbsF = XMVectorAbs(VF);
+
+    XMVECTOR G = _mm_mul_ps(VF,VF);
+    XMVECTOR D = _mm_load_ps1(&ATanConstants1.f[3]);
+    D = _mm_add_ps(D,G);
+    D = _mm_mul_ps(D,G);
+    vConstants = _mm_load_ps1(&ATanConstants1.f[2]);
+    D = _mm_add_ps(D,vConstants);
+    D = _mm_mul_ps(D,G);
+    vConstants = _mm_load_ps1(&ATanConstants1.f[1]);
+    D = _mm_add_ps(D,vConstants);
+    D = _mm_mul_ps(D,G);
+    vConstants = _mm_load_ps1(&ATanConstants1.f[0]);
+    D = _mm_add_ps(D,vConstants);
+
+    XMVECTOR N = _mm_load_ps1(&ATanConstants0.f[3]);
+    N = _mm_mul_ps(N,G);
+    vConstants = _mm_load_ps1(&ATanConstants0.f[2]);
+    N = _mm_add_ps(N,vConstants);
+    N = _mm_mul_ps(N,G);
+    vConstants = _mm_load_ps1(&ATanConstants0.f[1]);
+    N = _mm_add_ps(N,vConstants);
+    N = _mm_mul_ps(N,G);
+    vConstants = _mm_load_ps1(&ATanConstants0.f[0]);
+    N = _mm_add_ps(N,vConstants);
+    N = _mm_mul_ps(N,G);
+    XMVECTOR Result = _mm_div_ps(N,D);
+
+    Result = _mm_mul_ps(Result,VF);
+    Result = _mm_add_ps(Result,VF);
+    // Epsilon
+    vConstants = _mm_load_ps1(&ATanConstants2.f[3]);
+    vConstants = _mm_cmpge_ps(vConstants,AbsF);
+    Result = XMVectorSelect(Result,VF,vConstants);
+
+    XMVECTOR NegativeResult = _mm_mul_ps(Result,g_XMNegativeOne);
+    Result = XMVectorSelect(Result,NegativeResult,F_GT_One);
+    Result = _mm_add_ps(Result,Angle1);
+
+    Zero = _mm_cmpge_ps(Zero,V);
+    NegativeResult = _mm_mul_ps(Result,g_XMNegativeOne);
+    Result = XMVectorSelect(Result,NegativeResult,Zero);
+
+    XMVECTOR MaxV = _mm_load_ps1(&ATanConstants3.f[3]);
+    XMVECTOR MinV = _mm_mul_ps(MaxV,g_XMNegativeOne);
+    // Negate HalfPi
+    HalfPi = _mm_mul_ps(HalfPi,g_XMNegativeOne);
+    MaxV = _mm_cmple_ps(MaxV,V);
+    MinV = _mm_cmpge_ps(MinV,V);
+    Result = XMVectorSelect(Result,g_XMHalfPi,MaxV);
+    // HalfPi = -HalfPi
+    Result = XMVectorSelect(Result,HalfPi,MinV);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVectorATan2
+(
+    FXMVECTOR Y, 
+    FXMVECTOR X
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    // Return the inverse tangent of Y / X in the range of -Pi to Pi with the following exceptions:
+
+    //     Y == 0 and X is Negative         -> Pi with the sign of Y
+    //     y == 0 and x is positive         -> 0 with the sign of y
+    //     Y != 0 and X == 0                -> Pi / 2 with the sign of Y
+    //     Y != 0 and X is Negative         -> atan(y/x) + (PI with the sign of Y)
+    //     X == -Infinity and Finite Y      -> Pi with the sign of Y
+    //     X == +Infinity and Finite Y      -> 0 with the sign of Y
+    //     Y == Infinity and X is Finite    -> Pi / 2 with the sign of Y
+    //     Y == Infinity and X == -Infinity -> 3Pi / 4 with the sign of Y
+    //     Y == Infinity and X == +Infinity -> Pi / 4 with the sign of Y
+
+    XMVECTOR Reciprocal;
+    XMVECTOR V;
+    XMVECTOR YSign;
+    XMVECTOR Pi, PiOverTwo, PiOverFour, ThreePiOverFour;
+    XMVECTOR YEqualsZero, XEqualsZero, XIsPositive, YEqualsInfinity, XEqualsInfinity;
+    XMVECTOR ATanResultValid;
+    XMVECTOR R0, R1, R2, R3, R4, R5;
+    XMVECTOR Zero;
+    XMVECTOR Result;
+    static CONST XMVECTOR ATan2Constants = {XM_PI, XM_PIDIV2, XM_PIDIV4, XM_PI * 3.0f / 4.0f};
+
+    Zero = XMVectorZero();
+    ATanResultValid = XMVectorTrueInt();
+
+    Pi = XMVectorSplatX(ATan2Constants);
+    PiOverTwo = XMVectorSplatY(ATan2Constants);
+    PiOverFour = XMVectorSplatZ(ATan2Constants);
+    ThreePiOverFour = XMVectorSplatW(ATan2Constants);
+
+    YEqualsZero = XMVectorEqual(Y, Zero);
+    XEqualsZero = XMVectorEqual(X, Zero);
+    XIsPositive = XMVectorAndInt(X, g_XMNegativeZero.v);
+    XIsPositive = XMVectorEqualInt(XIsPositive, Zero);
+    YEqualsInfinity = XMVectorIsInfinite(Y);
+    XEqualsInfinity = XMVectorIsInfinite(X);
+
+    YSign = XMVectorAndInt(Y, g_XMNegativeZero.v);
+    Pi = XMVectorOrInt(Pi, YSign);
+    PiOverTwo = XMVectorOrInt(PiOverTwo, YSign);
+    PiOverFour = XMVectorOrInt(PiOverFour, YSign);
+    ThreePiOverFour = XMVectorOrInt(ThreePiOverFour, YSign);
+
+    R1 = XMVectorSelect(Pi, YSign, XIsPositive);
+    R2 = XMVectorSelect(ATanResultValid, PiOverTwo, XEqualsZero);
+    R3 = XMVectorSelect(R2, R1, YEqualsZero);
+    R4 = XMVectorSelect(ThreePiOverFour, PiOverFour, XIsPositive);
+    R5 = XMVectorSelect(PiOverTwo, R4, XEqualsInfinity);
+    Result = XMVectorSelect(R3, R5, YEqualsInfinity);
+    ATanResultValid = XMVectorEqualInt(Result, ATanResultValid);
+
+    Reciprocal = XMVectorReciprocal(X);
+    V = XMVectorMultiply(Y, Reciprocal);
+    R0 = XMVectorATan(V);
+
+    R1 = XMVectorSelect( Pi, Zero, XIsPositive );
+    R2 = XMVectorAdd(R0, R1);
+
+    Result = XMVectorSelect(Result, R2, ATanResultValid);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    static CONST XMVECTORF32 ATan2Constants = {XM_PI, XM_PIDIV2, XM_PIDIV4, XM_PI * 3.0f / 4.0f};
+
+    // Mask if Y>0 && Y!=INF
+    XMVECTOR YEqualsInfinity = XMVectorIsInfinite(Y);
+    // Get the sign of (Y&0x80000000)
+    XMVECTOR YSign = _mm_and_ps(Y, g_XMNegativeZero);
+    // Get the sign bits of X
+    XMVECTOR XIsPositive = _mm_and_ps(X,g_XMNegativeZero);
+    // Change them to masks
+    XIsPositive = XMVectorEqualInt(XIsPositive,g_XMZero);
+    // Get Pi
+    XMVECTOR Pi = _mm_load_ps1(&ATan2Constants.f[0]);
+    // Copy the sign of Y
+    Pi = _mm_or_ps(Pi,YSign);
+    XMVECTOR R1 = XMVectorSelect(Pi,YSign,XIsPositive);
+    // Mask for X==0
+    XMVECTOR vConstants = _mm_cmpeq_ps(X,g_XMZero);
+    // Get Pi/2 with with sign of Y
+    XMVECTOR PiOverTwo = _mm_load_ps1(&ATan2Constants.f[1]);
+    PiOverTwo = _mm_or_ps(PiOverTwo,YSign);
+    XMVECTOR R2 = XMVectorSelect(g_XMNegOneMask,PiOverTwo,vConstants);
+    // Mask for Y==0
+    vConstants = _mm_cmpeq_ps(Y,g_XMZero);
+    R2 = XMVectorSelect(R2,R1,vConstants);
+    // Get Pi/4 with sign of Y
+    XMVECTOR PiOverFour = _mm_load_ps1(&ATan2Constants.f[2]);
+    PiOverFour = _mm_or_ps(PiOverFour,YSign);
+    // Get (Pi*3)/4 with sign of Y
+    XMVECTOR ThreePiOverFour = _mm_load_ps1(&ATan2Constants.f[3]);
+    ThreePiOverFour = _mm_or_ps(ThreePiOverFour,YSign);
+    vConstants = XMVectorSelect(ThreePiOverFour, PiOverFour, XIsPositive);
+    XMVECTOR XEqualsInfinity = XMVectorIsInfinite(X);
+    vConstants = XMVectorSelect(PiOverTwo,vConstants,XEqualsInfinity);
+
+    XMVECTOR vResult = XMVectorSelect(R2,vConstants,YEqualsInfinity);
+    vConstants = XMVectorSelect(R1,vResult,YEqualsInfinity);
+    // At this point, any entry that's zero will get the result
+    // from XMVectorATan(), otherwise, return the failsafe value
+    vResult = XMVectorSelect(vResult,vConstants,XEqualsInfinity);
+    // Any entries not 0xFFFFFFFF, are considered precalculated
+    XMVECTOR ATanResultValid = XMVectorEqualInt(vResult,g_XMNegOneMask);
+    // Let's do the ATan2 function
+    vConstants = _mm_div_ps(Y,X);
+    vConstants = XMVectorATan(vConstants);
+    // Discard entries that have been declared void
+
+    XMVECTOR R3 = XMVectorSelect( Pi, g_XMZero, XIsPositive );
+    vConstants = _mm_add_ps( vConstants, R3 );
+
+    vResult = XMVectorSelect(vResult,vConstants,ATanResultValid);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorSinEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V2, V3, V5, V7;
+    XMVECTOR S1, S2, S3;
+    XMVECTOR Result;
+
+    // sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! (for -PI <= V < PI)
+    V2 = XMVectorMultiply(V, V);
+    V3 = XMVectorMultiply(V2, V);
+    V5 = XMVectorMultiply(V3, V2);
+    V7 = XMVectorMultiply(V5, V2);
+
+    S1 = XMVectorSplatY(g_XMSinEstCoefficients.v);
+    S2 = XMVectorSplatZ(g_XMSinEstCoefficients.v);
+    S3 = XMVectorSplatW(g_XMSinEstCoefficients.v);
+
+    Result = XMVectorMultiplyAdd(S1, V3, V);
+    Result = XMVectorMultiplyAdd(S2, V5, Result);
+    Result = XMVectorMultiplyAdd(S3, V7, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! (for -PI <= V < PI)
+    XMVECTOR V2 = _mm_mul_ps(V,V);
+    XMVECTOR V3 = _mm_mul_ps(V2,V);
+    XMVECTOR vResult = _mm_load_ps1(&g_XMSinEstCoefficients.f[1]);
+    vResult = _mm_mul_ps(vResult,V3);
+    vResult = _mm_add_ps(vResult,V);
+    XMVECTOR vConstants = _mm_load_ps1(&g_XMSinEstCoefficients.f[2]);
+    // V^5
+    V3 = _mm_mul_ps(V3,V2);
+    vConstants = _mm_mul_ps(vConstants,V3);
+    vResult = _mm_add_ps(vResult,vConstants);
+    vConstants = _mm_load_ps1(&g_XMSinEstCoefficients.f[3]);
+    // V^7
+    V3 = _mm_mul_ps(V3,V2);
+    vConstants = _mm_mul_ps(vConstants,V3);
+    vResult = _mm_add_ps(vResult,vConstants);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorCosEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V2, V4, V6;
+    XMVECTOR C0, C1, C2, C3;
+    XMVECTOR Result;
+
+    V2 = XMVectorMultiply(V, V);
+    V4 = XMVectorMultiply(V2, V2);
+    V6 = XMVectorMultiply(V4, V2);
+
+    C0 = XMVectorSplatX(g_XMCosEstCoefficients.v);
+    C1 = XMVectorSplatY(g_XMCosEstCoefficients.v);
+    C2 = XMVectorSplatZ(g_XMCosEstCoefficients.v);
+    C3 = XMVectorSplatW(g_XMCosEstCoefficients.v);
+
+    Result = XMVectorMultiplyAdd(C1, V2, C0);
+    Result = XMVectorMultiplyAdd(C2, V4, Result);
+    Result = XMVectorMultiplyAdd(C3, V6, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Get V^2
+    XMVECTOR V2 = _mm_mul_ps(V,V);
+    XMVECTOR vResult = _mm_load_ps1(&g_XMCosEstCoefficients.f[1]);
+    vResult = _mm_mul_ps(vResult,V2);
+    XMVECTOR vConstants = _mm_load_ps1(&g_XMCosEstCoefficients.f[0]);
+    vResult = _mm_add_ps(vResult,vConstants);
+    vConstants = _mm_load_ps1(&g_XMCosEstCoefficients.f[2]);
+    // Get V^4
+    XMVECTOR V4 = _mm_mul_ps(V2, V2);
+    vConstants = _mm_mul_ps(vConstants,V4);
+    vResult = _mm_add_ps(vResult,vConstants);
+    vConstants = _mm_load_ps1(&g_XMCosEstCoefficients.f[3]);
+    // It's really V^6
+    V4 = _mm_mul_ps(V4,V2);
+    vConstants = _mm_mul_ps(vConstants,V4);
+    vResult = _mm_add_ps(vResult,vConstants);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE VOID XMVectorSinCosEst
+(
+    XMVECTOR* pSin, 
+    XMVECTOR* pCos, 
+    FXMVECTOR  V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V2, V3, V4, V5, V6, V7;
+    XMVECTOR S1, S2, S3;
+    XMVECTOR C0, C1, C2, C3;
+    XMVECTOR Sin, Cos;
+
+    XMASSERT(pSin);
+    XMASSERT(pCos);
+
+    // sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! (for -PI <= V < PI)
+    // cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! (for -PI <= V < PI)
+    V2 = XMVectorMultiply(V, V);
+    V3 = XMVectorMultiply(V2, V);
+    V4 = XMVectorMultiply(V2, V2);
+    V5 = XMVectorMultiply(V3, V2);
+    V6 = XMVectorMultiply(V3, V3);
+    V7 = XMVectorMultiply(V4, V3);
+
+    S1 = XMVectorSplatY(g_XMSinEstCoefficients.v);
+    S2 = XMVectorSplatZ(g_XMSinEstCoefficients.v);
+    S3 = XMVectorSplatW(g_XMSinEstCoefficients.v);
+
+    C0 = XMVectorSplatX(g_XMCosEstCoefficients.v);
+    C1 = XMVectorSplatY(g_XMCosEstCoefficients.v);
+    C2 = XMVectorSplatZ(g_XMCosEstCoefficients.v);
+    C3 = XMVectorSplatW(g_XMCosEstCoefficients.v);
+
+    Sin = XMVectorMultiplyAdd(S1, V3, V);
+    Sin = XMVectorMultiplyAdd(S2, V5, Sin);
+    Sin = XMVectorMultiplyAdd(S3, V7, Sin);
+
+    Cos = XMVectorMultiplyAdd(C1, V2, C0);
+    Cos = XMVectorMultiplyAdd(C2, V4, Cos);
+    Cos = XMVectorMultiplyAdd(C3, V6, Cos);
+
+    *pSin = Sin;
+    *pCos = Cos;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pSin);
+    XMASSERT(pCos);
+    XMVECTOR V2, V3, V4, V5, V6, V7;
+    XMVECTOR S1, S2, S3;
+    XMVECTOR C0, C1, C2, C3;
+    XMVECTOR Sin, Cos;
+
+    // sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! (for -PI <= V < PI)
+    // cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! (for -PI <= V < PI)
+    V2 = XMVectorMultiply(V, V);
+    V3 = XMVectorMultiply(V2, V);
+    V4 = XMVectorMultiply(V2, V2);
+    V5 = XMVectorMultiply(V3, V2);
+    V6 = XMVectorMultiply(V3, V3);
+    V7 = XMVectorMultiply(V4, V3);
+
+    S1 = _mm_load_ps1(&g_XMSinEstCoefficients.f[1]);
+    S2 = _mm_load_ps1(&g_XMSinEstCoefficients.f[2]);
+    S3 = _mm_load_ps1(&g_XMSinEstCoefficients.f[3]);
+
+    C0 = _mm_load_ps1(&g_XMCosEstCoefficients.f[0]);
+    C1 = _mm_load_ps1(&g_XMCosEstCoefficients.f[1]);
+    C2 = _mm_load_ps1(&g_XMCosEstCoefficients.f[2]);
+    C3 = _mm_load_ps1(&g_XMCosEstCoefficients.f[3]);
+
+    Sin = XMVectorMultiplyAdd(S1, V3, V);
+    Sin = XMVectorMultiplyAdd(S2, V5, Sin);
+    Sin = XMVectorMultiplyAdd(S3, V7, Sin);
+
+    Cos = XMVectorMultiplyAdd(C1, V2, C0);
+    Cos = XMVectorMultiplyAdd(C2, V4, Cos);
+    Cos = XMVectorMultiplyAdd(C3, V6, Cos);
+
+    *pSin = Sin;
+    *pCos = Cos;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorTanEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V1, V2, V1T0, V1T1, V2T2;
+    XMVECTOR T0, T1, T2;
+    XMVECTOR N, D;
+    XMVECTOR OneOverPi;
+    XMVECTOR Result;
+
+    OneOverPi = XMVectorSplatW(g_XMTanEstCoefficients.v);
+
+    V1 = XMVectorMultiply(V, OneOverPi);
+    V1 = XMVectorRound(V1);
+
+    V1 = XMVectorNegativeMultiplySubtract(g_XMPi.v, V1, V);
+
+    T0 = XMVectorSplatX(g_XMTanEstCoefficients.v);
+    T1 = XMVectorSplatY(g_XMTanEstCoefficients.v);
+    T2 = XMVectorSplatZ(g_XMTanEstCoefficients.v);
+
+    V2T2 = XMVectorNegativeMultiplySubtract(V1, V1, T2);
+    V2 = XMVectorMultiply(V1, V1);
+    V1T0 = XMVectorMultiply(V1, T0);
+    V1T1 = XMVectorMultiply(V1, T1);
+
+    D = XMVectorReciprocalEst(V2T2);
+    N = XMVectorMultiplyAdd(V2, V1T1, V1T0);
+
+    Result = XMVectorMultiply(N, D);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR V1, V2, V1T0, V1T1, V2T2;
+    XMVECTOR T0, T1, T2;
+    XMVECTOR N, D;
+    XMVECTOR OneOverPi;
+    XMVECTOR Result;
+
+    OneOverPi = XMVectorSplatW(g_XMTanEstCoefficients);
+
+    V1 = XMVectorMultiply(V, OneOverPi);
+    V1 = XMVectorRound(V1);
+
+    V1 = XMVectorNegativeMultiplySubtract(g_XMPi, V1, V);
+
+    T0 = XMVectorSplatX(g_XMTanEstCoefficients);
+    T1 = XMVectorSplatY(g_XMTanEstCoefficients);
+    T2 = XMVectorSplatZ(g_XMTanEstCoefficients);
+
+    V2T2 = XMVectorNegativeMultiplySubtract(V1, V1, T2);
+    V2 = XMVectorMultiply(V1, V1);
+    V1T0 = XMVectorMultiply(V1, T0);
+    V1T1 = XMVectorMultiply(V1, T1);
+
+    D = XMVectorReciprocalEst(V2T2);
+    N = XMVectorMultiplyAdd(V2, V1T1, V1T0);
+
+    Result = XMVectorMultiply(N, D);
+
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorSinHEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V1, V2;
+    XMVECTOR E1, E2;
+    XMVECTOR Result;
+    static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
+
+    V1 = XMVectorMultiplyAdd(V, Scale.v, g_XMNegativeOne.v);
+    V2 = XMVectorNegativeMultiplySubtract(V, Scale.v, g_XMNegativeOne.v);
+
+    E1 = XMVectorExpEst(V1);
+    E2 = XMVectorExpEst(V2);
+
+    Result = XMVectorSubtract(E1, E2);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR V1, V2;
+    XMVECTOR E1, E2;
+    XMVECTOR Result;
+    static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
+
+    V1 = _mm_mul_ps(V,Scale);
+    V1 = _mm_add_ps(V1,g_XMNegativeOne);
+    V2 = _mm_mul_ps(V,Scale);
+    V2 = _mm_sub_ps(g_XMNegativeOne,V2);
+    E1 = XMVectorExpEst(V1);
+    E2 = XMVectorExpEst(V2);
+    Result = _mm_sub_ps(E1, E2);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorCosHEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V1, V2;
+    XMVECTOR E1, E2;
+    XMVECTOR Result;
+    static CONST XMVECTOR Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
+
+    V1 = XMVectorMultiplyAdd(V, Scale, g_XMNegativeOne.v);
+    V2 = XMVectorNegativeMultiplySubtract(V, Scale, g_XMNegativeOne.v);
+
+    E1 = XMVectorExpEst(V1);
+    E2 = XMVectorExpEst(V2);
+
+    Result = XMVectorAdd(E1, E2);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR V1, V2;
+    XMVECTOR E1, E2;
+    XMVECTOR Result;
+    static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
+
+    V1 = _mm_mul_ps(V,Scale);
+    V1 = _mm_add_ps(V1,g_XMNegativeOne);
+    V2 = _mm_mul_ps(V, Scale);
+    V2 = _mm_sub_ps(g_XMNegativeOne,V2);
+    E1 = XMVectorExpEst(V1);
+    E2 = XMVectorExpEst(V2);
+    Result = _mm_add_ps(E1, E2);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorTanHEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR E;
+    XMVECTOR Result;
+    static CONST XMVECTOR Scale = {2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f}; // 2.0f / ln(2.0f)
+
+    E = XMVectorMultiply(V, Scale);
+    E = XMVectorExpEst(E);
+    E = XMVectorMultiplyAdd(E, g_XMOneHalf.v, g_XMOneHalf.v);
+    E = XMVectorReciprocalEst(E);
+
+    Result = XMVectorSubtract(g_XMOne.v, E);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    static CONST XMVECTORF32 Scale = {2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f}; // 2.0f / ln(2.0f)
+
+    XMVECTOR E = _mm_mul_ps(V, Scale);
+    E = XMVectorExpEst(E);
+    E = _mm_mul_ps(E,g_XMOneHalf);
+    E = _mm_add_ps(E,g_XMOneHalf);
+    E = XMVectorReciprocalEst(E);
+    E = _mm_sub_ps(g_XMOne, E);
+    return E;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorASinEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR AbsV, V2, VD, VC0, V2C3;
+    XMVECTOR C0, C1, C2, C3;
+    XMVECTOR D, Rsq, SqrtD;
+    XMVECTOR OnePlusEps;
+    XMVECTOR Result;
+
+    AbsV = XMVectorAbs(V);
+
+    OnePlusEps = XMVectorSplatX(g_XMASinEstConstants.v);
+
+    C0 = XMVectorSplatX(g_XMASinEstCoefficients.v);
+    C1 = XMVectorSplatY(g_XMASinEstCoefficients.v);
+    C2 = XMVectorSplatZ(g_XMASinEstCoefficients.v);
+    C3 = XMVectorSplatW(g_XMASinEstCoefficients.v);
+
+    D = XMVectorSubtract(OnePlusEps, AbsV);
+
+    Rsq = XMVectorReciprocalSqrtEst(D);
+    SqrtD = XMVectorMultiply(D, Rsq);
+
+    V2 = XMVectorMultiply(V, AbsV);
+    V2C3 = XMVectorMultiply(V2, C3);
+    VD = XMVectorMultiply(D, AbsV);
+    VC0 = XMVectorMultiply(V, C0);
+
+    Result = XMVectorMultiply(V, C1);
+    Result = XMVectorMultiplyAdd(V2, C2, Result);
+    Result = XMVectorMultiplyAdd(V2C3, VD, Result);
+    Result = XMVectorMultiplyAdd(VC0, SqrtD, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Get abs(V)
+    XMVECTOR vAbsV = _mm_setzero_ps();
+    vAbsV = _mm_sub_ps(vAbsV,V);
+    vAbsV = _mm_max_ps(vAbsV,V);
+
+    XMVECTOR D = _mm_load_ps1(&g_XMASinEstConstants.f[0]);
+    D = _mm_sub_ps(D,vAbsV);
+    // Since this is an estimate, rqsrt is okay
+    XMVECTOR vConstants = _mm_rsqrt_ps(D);
+    XMVECTOR SqrtD = _mm_mul_ps(D,vConstants);
+    // V2 = V^2 retaining sign
+    XMVECTOR V2 = _mm_mul_ps(V,vAbsV);
+    D = _mm_mul_ps(D,vAbsV);
+
+    XMVECTOR vResult = _mm_load_ps1(&g_XMASinEstCoefficients.f[1]);
+    vResult = _mm_mul_ps(vResult,V);
+    vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[2]);
+    vConstants = _mm_mul_ps(vConstants,V2);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[3]);
+    vConstants = _mm_mul_ps(vConstants,V2);
+    vConstants = _mm_mul_ps(vConstants,D);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[0]);
+    vConstants = _mm_mul_ps(vConstants,V);
+    vConstants = _mm_mul_ps(vConstants,SqrtD);
+    vResult = _mm_add_ps(vResult,vConstants);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorACosEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR AbsV, V2, VD, VC0, V2C3;
+    XMVECTOR C0, C1, C2, C3;
+    XMVECTOR D, Rsq, SqrtD;
+    XMVECTOR OnePlusEps, HalfPi;
+    XMVECTOR Result;
+
+    // acos(V) = PI / 2 - asin(V)
+
+    AbsV = XMVectorAbs(V);
+
+    OnePlusEps = XMVectorSplatX(g_XMASinEstConstants.v);
+    HalfPi = XMVectorSplatY(g_XMASinEstConstants.v);
+
+    C0 = XMVectorSplatX(g_XMASinEstCoefficients.v);
+    C1 = XMVectorSplatY(g_XMASinEstCoefficients.v);
+    C2 = XMVectorSplatZ(g_XMASinEstCoefficients.v);
+    C3 = XMVectorSplatW(g_XMASinEstCoefficients.v);
+
+    D = XMVectorSubtract(OnePlusEps, AbsV);
+
+    Rsq = XMVectorReciprocalSqrtEst(D);
+    SqrtD = XMVectorMultiply(D, Rsq);
+
+    V2 = XMVectorMultiply(V, AbsV);
+    V2C3 = XMVectorMultiply(V2, C3);
+    VD = XMVectorMultiply(D, AbsV);
+    VC0 = XMVectorMultiply(V, C0);
+
+    Result = XMVectorMultiply(V, C1);
+    Result = XMVectorMultiplyAdd(V2, C2, Result);
+    Result = XMVectorMultiplyAdd(V2C3, VD, Result);
+    Result = XMVectorMultiplyAdd(VC0, SqrtD, Result);
+    Result = XMVectorSubtract(HalfPi, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // acos(V) = PI / 2 - asin(V)
+    // Get abs(V)
+    XMVECTOR vAbsV = _mm_setzero_ps();
+    vAbsV = _mm_sub_ps(vAbsV,V);
+    vAbsV = _mm_max_ps(vAbsV,V);
+    // Calc D
+    XMVECTOR D = _mm_load_ps1(&g_XMASinEstConstants.f[0]);
+    D = _mm_sub_ps(D,vAbsV);
+    // SqrtD = sqrt(D-abs(V)) estimated
+    XMVECTOR vConstants = _mm_rsqrt_ps(D);
+    XMVECTOR SqrtD = _mm_mul_ps(D,vConstants);
+    // V2 = V^2 while retaining sign
+    XMVECTOR V2 = _mm_mul_ps(V, vAbsV);
+    // Drop vAbsV here. D = (Const-abs(V))*abs(V)
+    D = _mm_mul_ps(D, vAbsV);
+
+    XMVECTOR vResult = _mm_load_ps1(&g_XMASinEstCoefficients.f[1]);
+    vResult = _mm_mul_ps(vResult,V);
+    vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[2]);
+    vConstants = _mm_mul_ps(vConstants,V2);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[3]);
+    vConstants = _mm_mul_ps(vConstants,V2);
+    vConstants = _mm_mul_ps(vConstants,D);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[0]);
+    vConstants = _mm_mul_ps(vConstants,V);
+    vConstants = _mm_mul_ps(vConstants,SqrtD);
+    vResult = _mm_add_ps(vResult,vConstants);
+
+    vConstants = _mm_load_ps1(&g_XMASinEstConstants.f[1]);
+    vResult = _mm_sub_ps(vConstants,vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorATanEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR AbsV, V2S2, N, D;
+    XMVECTOR S0, S1, S2;
+    XMVECTOR HalfPi;
+    XMVECTOR Result;
+
+    S0 = XMVectorSplatX(g_XMATanEstCoefficients.v);
+    S1 = XMVectorSplatY(g_XMATanEstCoefficients.v);
+    S2 = XMVectorSplatZ(g_XMATanEstCoefficients.v);
+    HalfPi = XMVectorSplatW(g_XMATanEstCoefficients.v);
+
+    AbsV = XMVectorAbs(V);
+
+    V2S2 = XMVectorMultiplyAdd(V, V, S2);
+    N = XMVectorMultiplyAdd(AbsV, HalfPi, S0);
+    D = XMVectorMultiplyAdd(AbsV, S1, V2S2);
+    N = XMVectorMultiply(N, V);
+    D = XMVectorReciprocalEst(D);
+
+    Result = XMVectorMultiply(N, D);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Get abs(V)
+    XMVECTOR vAbsV = _mm_setzero_ps();
+    vAbsV = _mm_sub_ps(vAbsV,V);
+    vAbsV = _mm_max_ps(vAbsV,V);
+
+    XMVECTOR vResult = _mm_load_ps1(&g_XMATanEstCoefficients.f[3]);
+    vResult = _mm_mul_ps(vResult,vAbsV);
+    XMVECTOR vConstants = _mm_load_ps1(&g_XMATanEstCoefficients.f[0]);
+    vResult = _mm_add_ps(vResult,vConstants);
+    vResult = _mm_mul_ps(vResult,V);
+
+    XMVECTOR D = _mm_mul_ps(V,V);
+    vConstants = _mm_load_ps1(&g_XMATanEstCoefficients.f[2]);
+    D = _mm_add_ps(D,vConstants);
+    vConstants = _mm_load_ps1(&g_XMATanEstCoefficients.f[1]);
+    vConstants = _mm_mul_ps(vConstants,vAbsV);
+    D = _mm_add_ps(D,vConstants);
+    vResult = _mm_div_ps(vResult,D);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorATan2Est
+(
+    FXMVECTOR Y, 
+    FXMVECTOR X
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Reciprocal;
+    XMVECTOR V;
+    XMVECTOR YSign;
+    XMVECTOR Pi, PiOverTwo, PiOverFour, ThreePiOverFour;
+    XMVECTOR YEqualsZero, XEqualsZero, XIsPositive, YEqualsInfinity, XEqualsInfinity;
+    XMVECTOR ATanResultValid;
+    XMVECTOR R0, R1, R2, R3, R4, R5;
+    XMVECTOR Zero;
+    XMVECTOR Result;
+    static CONST XMVECTOR ATan2Constants = {XM_PI, XM_PIDIV2, XM_PIDIV4, XM_PI * 3.0f / 4.0f};
+
+    Zero = XMVectorZero();
+    ATanResultValid = XMVectorTrueInt();
+
+    Pi = XMVectorSplatX(ATan2Constants);
+    PiOverTwo = XMVectorSplatY(ATan2Constants);
+    PiOverFour = XMVectorSplatZ(ATan2Constants);
+    ThreePiOverFour = XMVectorSplatW(ATan2Constants);
+
+    YEqualsZero = XMVectorEqual(Y, Zero);
+    XEqualsZero = XMVectorEqual(X, Zero);
+    XIsPositive = XMVectorAndInt(X, g_XMNegativeZero.v);
+    XIsPositive = XMVectorEqualInt(XIsPositive, Zero);
+    YEqualsInfinity = XMVectorIsInfinite(Y);
+    XEqualsInfinity = XMVectorIsInfinite(X);
+
+    YSign = XMVectorAndInt(Y, g_XMNegativeZero.v);
+    Pi = XMVectorOrInt(Pi, YSign);
+    PiOverTwo = XMVectorOrInt(PiOverTwo, YSign);
+    PiOverFour = XMVectorOrInt(PiOverFour, YSign);
+    ThreePiOverFour = XMVectorOrInt(ThreePiOverFour, YSign);
+
+    R1 = XMVectorSelect(Pi, YSign, XIsPositive);
+    R2 = XMVectorSelect(ATanResultValid, PiOverTwo, XEqualsZero);
+    R3 = XMVectorSelect(R2, R1, YEqualsZero);
+    R4 = XMVectorSelect(ThreePiOverFour, PiOverFour, XIsPositive);
+    R5 = XMVectorSelect(PiOverTwo, R4, XEqualsInfinity);
+    Result = XMVectorSelect(R3, R5, YEqualsInfinity);
+    ATanResultValid = XMVectorEqualInt(Result, ATanResultValid);
+
+    Reciprocal = XMVectorReciprocalEst(X);
+    V = XMVectorMultiply(Y, Reciprocal);
+    R0 = XMVectorATanEst(V);
+
+    R1 = XMVectorSelect( Pi, Zero, XIsPositive );
+    R2 = XMVectorAdd(R0, R1);
+
+    Result = XMVectorSelect(Result, R2, ATanResultValid);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    static CONST XMVECTORF32 ATan2Constants = {XM_PI, XM_PIDIV2, XM_PIDIV4, XM_PI * 3.0f / 4.0f};
+
+    // Mask if Y>0 && Y!=INF
+    XMVECTOR YEqualsInfinity = XMVectorIsInfinite(Y);
+    // Get the sign of (Y&0x80000000)
+    XMVECTOR YSign = _mm_and_ps(Y, g_XMNegativeZero);
+    // Get the sign bits of X
+    XMVECTOR XIsPositive = _mm_and_ps(X,g_XMNegativeZero);
+    // Change them to masks
+    XIsPositive = XMVectorEqualInt(XIsPositive,g_XMZero);
+    // Get Pi
+    XMVECTOR Pi = _mm_load_ps1(&ATan2Constants.f[0]);
+    // Copy the sign of Y
+    Pi = _mm_or_ps(Pi,YSign);
+    XMVECTOR R1 = XMVectorSelect(Pi,YSign,XIsPositive);
+    // Mask for X==0
+    XMVECTOR vConstants = _mm_cmpeq_ps(X,g_XMZero);
+    // Get Pi/2 with with sign of Y
+    XMVECTOR PiOverTwo = _mm_load_ps1(&ATan2Constants.f[1]);
+    PiOverTwo = _mm_or_ps(PiOverTwo,YSign);
+    XMVECTOR R2 = XMVectorSelect(g_XMNegOneMask,PiOverTwo,vConstants);
+    // Mask for Y==0
+    vConstants = _mm_cmpeq_ps(Y,g_XMZero);
+    R2 = XMVectorSelect(R2,R1,vConstants);
+    // Get Pi/4 with sign of Y
+    XMVECTOR PiOverFour = _mm_load_ps1(&ATan2Constants.f[2]);
+    PiOverFour = _mm_or_ps(PiOverFour,YSign);
+    // Get (Pi*3)/4 with sign of Y
+    XMVECTOR ThreePiOverFour = _mm_load_ps1(&ATan2Constants.f[3]);
+    ThreePiOverFour = _mm_or_ps(ThreePiOverFour,YSign);
+    vConstants = XMVectorSelect(ThreePiOverFour, PiOverFour, XIsPositive);
+    XMVECTOR XEqualsInfinity = XMVectorIsInfinite(X);
+    vConstants = XMVectorSelect(PiOverTwo,vConstants,XEqualsInfinity);
+
+    XMVECTOR vResult = XMVectorSelect(R2,vConstants,YEqualsInfinity);
+    vConstants = XMVectorSelect(R1,vResult,YEqualsInfinity);
+    // At this point, any entry that's zero will get the result
+    // from XMVectorATan(), otherwise, return the failsafe value
+    vResult = XMVectorSelect(vResult,vConstants,XEqualsInfinity);
+    // Any entries not 0xFFFFFFFF, are considered precalculated
+    XMVECTOR ATanResultValid = XMVectorEqualInt(vResult,g_XMNegOneMask);
+    // Let's do the ATan2 function
+    XMVECTOR Reciprocal = _mm_rcp_ps(X);
+    vConstants = _mm_mul_ps(Y, Reciprocal);
+    vConstants = XMVectorATanEst(vConstants);
+    // Discard entries that have been declared void
+
+    XMVECTOR R3 = XMVectorSelect( Pi, g_XMZero, XIsPositive );
+    vConstants = _mm_add_ps( vConstants, R3 );
+
+    vResult = XMVectorSelect(vResult,vConstants,ATanResultValid);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorLerp
+(
+    FXMVECTOR V0, 
+    FXMVECTOR V1, 
+    FLOAT    t
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Scale;
+    XMVECTOR Length;
+    XMVECTOR Result;
+
+    // V0 + t * (V1 - V0)
+    Scale = XMVectorReplicate(t);
+    Length = XMVectorSubtract(V1, V0);
+    Result = XMVectorMultiplyAdd(Length, Scale, V0);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR L, S;
+    XMVECTOR Result;
+
+    L = _mm_sub_ps( V1, V0 );
+
+    S = _mm_set_ps1( t );
+
+    Result = _mm_mul_ps( L, S );
+
+    return _mm_add_ps( Result, V0 );
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorLerpV
+(
+    FXMVECTOR V0, 
+    FXMVECTOR V1, 
+    FXMVECTOR T
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Length;
+    XMVECTOR Result;
+
+    // V0 + T * (V1 - V0)
+    Length = XMVectorSubtract(V1, V0);
+    Result = XMVectorMultiplyAdd(Length, T, V0);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR Length;
+    XMVECTOR Result;
+
+    Length = _mm_sub_ps( V1, V0 );
+
+    Result = _mm_mul_ps( Length, T );
+
+    return _mm_add_ps( Result, V0 );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorHermite
+(
+    FXMVECTOR Position0, 
+    FXMVECTOR Tangent0, 
+    FXMVECTOR Position1, 
+    CXMVECTOR Tangent1, 
+    FLOAT    t
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR P0;
+    XMVECTOR T0;
+    XMVECTOR P1;
+    XMVECTOR T1;
+    XMVECTOR Result;
+    FLOAT    t2;
+    FLOAT    t3;
+
+    // Result = (2 * t^3 - 3 * t^2 + 1) * Position0 +
+    //          (t^3 - 2 * t^2 + t) * Tangent0 +
+    //          (-2 * t^3 + 3 * t^2) * Position1 +
+    //          (t^3 - t^2) * Tangent1
+    t2 = t * t;
+    t3 = t * t2;
+
+    P0 = XMVectorReplicate(2.0f * t3 - 3.0f * t2 + 1.0f);
+    T0 = XMVectorReplicate(t3 - 2.0f * t2 + t);
+    P1 = XMVectorReplicate(-2.0f * t3 + 3.0f * t2);
+    T1 = XMVectorReplicate(t3 - t2);
+
+    Result = XMVectorMultiply(P0, Position0);
+    Result = XMVectorMultiplyAdd(T0, Tangent0, Result);
+    Result = XMVectorMultiplyAdd(P1, Position1, Result);
+    Result = XMVectorMultiplyAdd(T1, Tangent1, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    FLOAT t2 = t * t;
+    FLOAT t3 = t * t2;
+
+    XMVECTOR P0 = _mm_set_ps1(2.0f * t3 - 3.0f * t2 + 1.0f);
+    XMVECTOR T0 = _mm_set_ps1(t3 - 2.0f * t2 + t);
+    XMVECTOR P1 = _mm_set_ps1(-2.0f * t3 + 3.0f * t2);
+    XMVECTOR T1 = _mm_set_ps1(t3 - t2);
+
+    XMVECTOR vResult = _mm_mul_ps(P0, Position0);
+    XMVECTOR vTemp = _mm_mul_ps(T0, Tangent0);
+    vResult = _mm_add_ps(vResult,vTemp);
+    vTemp = _mm_mul_ps(P1, Position1);
+    vResult = _mm_add_ps(vResult,vTemp);
+    vTemp = _mm_mul_ps(T1, Tangent1);
+    vResult = _mm_add_ps(vResult,vTemp);
+    return vResult;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorHermiteV
+(
+    FXMVECTOR Position0, 
+    FXMVECTOR Tangent0, 
+    FXMVECTOR Position1, 
+    CXMVECTOR Tangent1, 
+    CXMVECTOR T
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR P0;
+    XMVECTOR T0;
+    XMVECTOR P1;
+    XMVECTOR T1;
+    XMVECTOR Result;
+    XMVECTOR T2;
+    XMVECTOR T3;
+
+    // Result = (2 * t^3 - 3 * t^2 + 1) * Position0 +
+    //          (t^3 - 2 * t^2 + t) * Tangent0 +
+    //          (-2 * t^3 + 3 * t^2) * Position1 +
+    //          (t^3 - t^2) * Tangent1
+    T2 = XMVectorMultiply(T, T);
+    T3 = XMVectorMultiply(T , T2);
+
+    P0 = XMVectorReplicate(2.0f * T3.vector4_f32[0] - 3.0f * T2.vector4_f32[0] + 1.0f);
+    T0 = XMVectorReplicate(T3.vector4_f32[1] - 2.0f * T2.vector4_f32[1] + T.vector4_f32[1]);
+    P1 = XMVectorReplicate(-2.0f * T3.vector4_f32[2] + 3.0f * T2.vector4_f32[2]);
+    T1 = XMVectorReplicate(T3.vector4_f32[3] - T2.vector4_f32[3]);
+
+    Result = XMVectorMultiply(P0, Position0);
+    Result = XMVectorMultiplyAdd(T0, Tangent0, Result);
+    Result = XMVectorMultiplyAdd(P1, Position1, Result);
+    Result = XMVectorMultiplyAdd(T1, Tangent1, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    static const XMVECTORF32 CatMulT2 = {-3.0f,-2.0f,3.0f,-1.0f};
+    static const XMVECTORF32 CatMulT3 = {2.0f,1.0f,-2.0f,1.0f};
+
+    // Result = (2 * t^3 - 3 * t^2 + 1) * Position0 +
+    //          (t^3 - 2 * t^2 + t) * Tangent0 +
+    //          (-2 * t^3 + 3 * t^2) * Position1 +
+    //          (t^3 - t^2) * Tangent1
+    XMVECTOR T2 = _mm_mul_ps(T,T);
+    XMVECTOR T3 = _mm_mul_ps(T,T2);
+    // Mul by the constants against t^2
+    T2 = _mm_mul_ps(T2,CatMulT2);
+    // Mul by the constants against t^3
+    T3 = _mm_mul_ps(T3,CatMulT3);
+    // T3 now has the pre-result.
+    T3 = _mm_add_ps(T3,T2);
+    // I need to add t.y only
+    T2 = _mm_and_ps(T,g_XMMaskY);
+    T3 = _mm_add_ps(T3,T2);
+    // Add 1.0f to x
+    T3 = _mm_add_ps(T3,g_XMIdentityR0);
+    // Now, I have the constants created
+    // Mul the x constant to Position0
+    XMVECTOR vResult = _mm_shuffle_ps(T3,T3,_MM_SHUFFLE(0,0,0,0));
+    vResult = _mm_mul_ps(vResult,Position0);
+    // Mul the y constant to Tangent0
+    T2 = _mm_shuffle_ps(T3,T3,_MM_SHUFFLE(1,1,1,1));
+    T2 = _mm_mul_ps(T2,Tangent0);
+    vResult = _mm_add_ps(vResult,T2);
+    // Mul the z constant to Position1
+    T2 = _mm_shuffle_ps(T3,T3,_MM_SHUFFLE(2,2,2,2));
+    T2 = _mm_mul_ps(T2,Position1);
+    vResult = _mm_add_ps(vResult,T2);
+    // Mul the w constant to Tangent1
+    T3 = _mm_shuffle_ps(T3,T3,_MM_SHUFFLE(3,3,3,3));
+    T3 = _mm_mul_ps(T3,Tangent1);
+    vResult = _mm_add_ps(vResult,T3);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorCatmullRom
+(
+    FXMVECTOR Position0, 
+    FXMVECTOR Position1, 
+    FXMVECTOR Position2, 
+    CXMVECTOR Position3, 
+    FLOAT    t
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR P0;
+    XMVECTOR P1;
+    XMVECTOR P2;
+    XMVECTOR P3;
+    XMVECTOR Result;
+    FLOAT    t2;
+    FLOAT    t3;
+
+    // Result = ((-t^3 + 2 * t^2 - t) * Position0 +
+    //           (3 * t^3 - 5 * t^2 + 2) * Position1 +
+    //           (-3 * t^3 + 4 * t^2 + t) * Position2 +
+    //           (t^3 - t^2) * Position3) * 0.5
+    t2 = t * t;
+    t3 = t * t2;
+
+    P0 = XMVectorReplicate((-t3 + 2.0f * t2 - t) * 0.5f);
+    P1 = XMVectorReplicate((3.0f * t3 - 5.0f * t2 + 2.0f) * 0.5f);
+    P2 = XMVectorReplicate((-3.0f * t3 + 4.0f * t2 + t) * 0.5f);
+    P3 = XMVectorReplicate((t3 - t2) * 0.5f);
+
+    Result = XMVectorMultiply(P0, Position0);
+    Result = XMVectorMultiplyAdd(P1, Position1, Result);
+    Result = XMVectorMultiplyAdd(P2, Position2, Result);
+    Result = XMVectorMultiplyAdd(P3, Position3, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    FLOAT t2 = t * t;
+    FLOAT t3 = t * t2;
+
+    XMVECTOR P0 = _mm_set_ps1((-t3 + 2.0f * t2 - t) * 0.5f);
+    XMVECTOR P1 = _mm_set_ps1((3.0f * t3 - 5.0f * t2 + 2.0f) * 0.5f);
+    XMVECTOR P2 = _mm_set_ps1((-3.0f * t3 + 4.0f * t2 + t) * 0.5f);
+    XMVECTOR P3 = _mm_set_ps1((t3 - t2) * 0.5f);
+
+    P0 = _mm_mul_ps(P0, Position0);
+    P1 = _mm_mul_ps(P1, Position1);
+    P2 = _mm_mul_ps(P2, Position2);
+    P3 = _mm_mul_ps(P3, Position3);
+    P0 = _mm_add_ps(P0,P1);
+    P2 = _mm_add_ps(P2,P3);
+    P0 = _mm_add_ps(P0,P2);
+    return P0;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorCatmullRomV
+(
+    FXMVECTOR Position0, 
+    FXMVECTOR Position1, 
+    FXMVECTOR Position2, 
+    CXMVECTOR Position3, 
+    CXMVECTOR T
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    float fx = T.vector4_f32[0];
+    float fy = T.vector4_f32[1];
+    float fz = T.vector4_f32[2];
+    float fw = T.vector4_f32[3];
+    XMVECTOR vResult = {
+        0.5f*((-fx*fx*fx+2*fx*fx-fx)*Position0.vector4_f32[0]+
+        (3*fx*fx*fx-5*fx*fx+2)*Position1.vector4_f32[0]+
+        (-3*fx*fx*fx+4*fx*fx+fx)*Position2.vector4_f32[0]+
+        (fx*fx*fx-fx*fx)*Position3.vector4_f32[0]),
+        0.5f*((-fy*fy*fy+2*fy*fy-fy)*Position0.vector4_f32[1]+
+        (3*fy*fy*fy-5*fy*fy+2)*Position1.vector4_f32[1]+
+        (-3*fy*fy*fy+4*fy*fy+fy)*Position2.vector4_f32[1]+
+        (fy*fy*fy-fy*fy)*Position3.vector4_f32[1]),
+        0.5f*((-fz*fz*fz+2*fz*fz-fz)*Position0.vector4_f32[2]+
+        (3*fz*fz*fz-5*fz*fz+2)*Position1.vector4_f32[2]+
+        (-3*fz*fz*fz+4*fz*fz+fz)*Position2.vector4_f32[2]+
+        (fz*fz*fz-fz*fz)*Position3.vector4_f32[2]),
+        0.5f*((-fw*fw*fw+2*fw*fw-fw)*Position0.vector4_f32[3]+
+        (3*fw*fw*fw-5*fw*fw+2)*Position1.vector4_f32[3]+
+        (-3*fw*fw*fw+4*fw*fw+fw)*Position2.vector4_f32[3]+
+        (fw*fw*fw-fw*fw)*Position3.vector4_f32[3])
+    };
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    static const XMVECTORF32 Catmul2 = {2.0f,2.0f,2.0f,2.0f};
+    static const XMVECTORF32 Catmul3 = {3.0f,3.0f,3.0f,3.0f};
+    static const XMVECTORF32 Catmul4 = {4.0f,4.0f,4.0f,4.0f};
+    static const XMVECTORF32 Catmul5 = {5.0f,5.0f,5.0f,5.0f};
+    // Cache T^2 and T^3
+    XMVECTOR T2 = _mm_mul_ps(T,T);
+    XMVECTOR T3 = _mm_mul_ps(T,T2);
+    // Perform the Position0 term
+    XMVECTOR vResult = _mm_add_ps(T2,T2);
+    vResult = _mm_sub_ps(vResult,T);
+    vResult = _mm_sub_ps(vResult,T3);
+    vResult = _mm_mul_ps(vResult,Position0);
+    // Perform the Position1 term and add
+    XMVECTOR vTemp = _mm_mul_ps(T3,Catmul3);
+    XMVECTOR vTemp2 = _mm_mul_ps(T2,Catmul5);
+    vTemp = _mm_sub_ps(vTemp,vTemp2);
+    vTemp = _mm_add_ps(vTemp,Catmul2);
+    vTemp = _mm_mul_ps(vTemp,Position1);
+    vResult = _mm_add_ps(vResult,vTemp);
+    // Perform the Position2 term and add
+    vTemp = _mm_mul_ps(T2,Catmul4);
+    vTemp2 = _mm_mul_ps(T3,Catmul3);
+    vTemp = _mm_sub_ps(vTemp,vTemp2);
+    vTemp = _mm_add_ps(vTemp,T);
+    vTemp = _mm_mul_ps(vTemp,Position2);
+    vResult = _mm_add_ps(vResult,vTemp);
+    // Position3 is the last term
+    T3 = _mm_sub_ps(T3,T2);
+    T3 = _mm_mul_ps(T3,Position3);
+    vResult = _mm_add_ps(vResult,T3);
+    // Multiply by 0.5f and exit
+    vResult = _mm_mul_ps(vResult,g_XMOneHalf);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorBaryCentric
+(
+    FXMVECTOR Position0, 
+    FXMVECTOR Position1, 
+    FXMVECTOR Position2, 
+    FLOAT    f, 
+    FLOAT    g
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    // Result = Position0 + f * (Position1 - Position0) + g * (Position2 - Position0)
+    XMVECTOR P10;
+    XMVECTOR P20;
+    XMVECTOR ScaleF;
+    XMVECTOR ScaleG;
+    XMVECTOR Result;
+
+    P10 = XMVectorSubtract(Position1, Position0);
+    ScaleF = XMVectorReplicate(f);
+
+    P20 = XMVectorSubtract(Position2, Position0);
+    ScaleG = XMVectorReplicate(g);
+
+    Result = XMVectorMultiplyAdd(P10, ScaleF, Position0);
+    Result = XMVectorMultiplyAdd(P20, ScaleG, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR R1 = _mm_sub_ps(Position1,Position0);
+    XMVECTOR SF = _mm_set_ps1(f);
+    XMVECTOR R2 = _mm_sub_ps(Position2,Position0);
+    XMVECTOR SG = _mm_set_ps1(g);
+    R1 = _mm_mul_ps(R1,SF);
+    R2 = _mm_mul_ps(R2,SG);
+    R1 = _mm_add_ps(R1,Position0);
+    R1 = _mm_add_ps(R1,R2);
+    return R1;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVectorBaryCentricV
+(
+    FXMVECTOR Position0, 
+    FXMVECTOR Position1, 
+    FXMVECTOR Position2, 
+    CXMVECTOR F, 
+    CXMVECTOR G
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    // Result = Position0 + f * (Position1 - Position0) + g * (Position2 - Position0)
+    XMVECTOR P10;
+    XMVECTOR P20;
+    XMVECTOR Result;
+
+    P10 = XMVectorSubtract(Position1, Position0);
+    P20 = XMVectorSubtract(Position2, Position0);
+
+    Result = XMVectorMultiplyAdd(P10, F, Position0);
+    Result = XMVectorMultiplyAdd(P20, G, Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR R1 = _mm_sub_ps(Position1,Position0);
+    XMVECTOR R2 = _mm_sub_ps(Position2,Position0);
+    R1 = _mm_mul_ps(R1,F);
+    R2 = _mm_mul_ps(R2,G);
+    R1 = _mm_add_ps(R1,Position0);
+    R1 = _mm_add_ps(R1,R2);
+    return R1;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+/****************************************************************************
+ *
+ * 2D Vector
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+// Comparison operations
+//------------------------------------------------------------------------------
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2Equal
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] == V2.vector4_f32[0]) && (V1.vector4_f32[1] == V2.vector4_f32[1])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
+// z and w are don't care
+    return (((_mm_movemask_ps(vTemp)&3)==3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector2EqualR(V1, V2));
+#endif
+}
+
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector2EqualR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    UINT CR = 0;
+
+    if ((V1.vector4_f32[0] == V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] == V2.vector4_f32[1]))
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if ((V1.vector4_f32[0] != V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] != V2.vector4_f32[1]))
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
+// z and w are don't care
+    int iTest = _mm_movemask_ps(vTemp)&3;
+    UINT CR = 0;
+    if (iTest==3)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2EqualInt
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_u32[0] == V2.vector4_u32[0]) && (V1.vector4_u32[1] == V2.vector4_u32[1])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
+    return (((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&3)==3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector2EqualIntR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector2EqualIntR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    UINT CR = 0;
+    if ((V1.vector4_u32[0] == V2.vector4_u32[0]) && 
+        (V1.vector4_u32[1] == V2.vector4_u32[1]))
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if ((V1.vector4_u32[0] != V2.vector4_u32[0]) && 
+        (V1.vector4_u32[1] != V2.vector4_u32[1]))
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
+    int iTest = _mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&3;
+    UINT CR = 0;
+    if (iTest==3)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2NearEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2, 
+    FXMVECTOR Epsilon
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    FLOAT dx, dy;
+    dx = fabsf(V1.vector4_f32[0]-V2.vector4_f32[0]);
+    dy = fabsf(V1.vector4_f32[1]-V2.vector4_f32[1]);
+    return ((dx <= Epsilon.vector4_f32[0]) &&
+            (dy <= Epsilon.vector4_f32[1]));
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Get the difference
+    XMVECTOR vDelta = _mm_sub_ps(V1,V2);
+    // Get the absolute value of the difference
+    XMVECTOR vTemp = _mm_setzero_ps();
+    vTemp = _mm_sub_ps(vTemp,vDelta);
+    vTemp = _mm_max_ps(vTemp,vDelta);
+    vTemp = _mm_cmple_ps(vTemp,Epsilon);
+    // z and w are don't care
+    return (((_mm_movemask_ps(vTemp)&3)==0x3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2NotEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] != V2.vector4_f32[0]) || (V1.vector4_f32[1] != V2.vector4_f32[1])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
+// z and w are don't care
+    return (((_mm_movemask_ps(vTemp)&3)!=3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAnyFalse(XMVector2EqualR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2NotEqualInt
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_u32[0] != V2.vector4_u32[0]) || (V1.vector4_u32[1] != V2.vector4_u32[1])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
+    return (((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&3)!=3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAnyFalse(XMVector2EqualIntR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2Greater
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] > V2.vector4_f32[0]) && (V1.vector4_f32[1] > V2.vector4_f32[1])) != 0);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
+// z and w are don't care
+    return (((_mm_movemask_ps(vTemp)&3)==3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector2GreaterR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector2GreaterR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    UINT CR = 0;
+    if ((V1.vector4_f32[0] > V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] > V2.vector4_f32[1]))
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if ((V1.vector4_f32[0] <= V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] <= V2.vector4_f32[1]))
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
+    int iTest = _mm_movemask_ps(vTemp)&3;
+    UINT CR = 0;
+    if (iTest==3)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2GreaterOrEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] >= V2.vector4_f32[0]) && (V1.vector4_f32[1] >= V2.vector4_f32[1])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
+    return (((_mm_movemask_ps(vTemp)&3)==3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector2GreaterOrEqualR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector2GreaterOrEqualR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT CR = 0;
+    if ((V1.vector4_f32[0] >= V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] >= V2.vector4_f32[1]))
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if ((V1.vector4_f32[0] < V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] < V2.vector4_f32[1]))
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
+    int iTest = _mm_movemask_ps(vTemp)&3;
+    UINT CR = 0;
+    if (iTest == 3)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2Less
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] < V2.vector4_f32[0]) && (V1.vector4_f32[1] < V2.vector4_f32[1])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmplt_ps(V1,V2);
+    return (((_mm_movemask_ps(vTemp)&3)==3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector2GreaterR(V2, V1));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2LessOrEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] <= V2.vector4_f32[0]) && (V1.vector4_f32[1] <= V2.vector4_f32[1])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmple_ps(V1,V2);
+    return (((_mm_movemask_ps(vTemp)&3)==3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector2GreaterOrEqualR(V2, V1));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2InBounds
+(
+    FXMVECTOR V, 
+    FXMVECTOR Bounds
+)
+{
+ #if defined(_XM_NO_INTRINSICS_)
+    return (((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) && 
+        (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1])) != 0);
+ #elif defined(_XM_SSE_INTRINSICS_)
+    // Test if less than or equal
+    XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
+    // Negate the bounds
+    XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
+    // Test if greater or equal (Reversed)
+    vTemp2 = _mm_cmple_ps(vTemp2,V);
+    // Blend answers
+    vTemp1 = _mm_and_ps(vTemp1,vTemp2);
+    // x and y in bounds? (z and w are don't care)
+    return (((_mm_movemask_ps(vTemp1)&0x3)==0x3) != 0);
+#else // _XM_VMX128_INTRINSICS_   
+    return XMComparisonAllInBounds(XMVector2InBoundsR(V, Bounds));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector2InBoundsR
+(
+    FXMVECTOR V, 
+    FXMVECTOR Bounds
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT CR = 0;
+    if ((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) && 
+        (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]))
+    {
+        CR = XM_CRMASK_CR6BOUNDS;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Test if less than or equal
+    XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
+    // Negate the bounds
+    XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
+    // Test if greater or equal (Reversed)
+    vTemp2 = _mm_cmple_ps(vTemp2,V);
+    // Blend answers
+    vTemp1 = _mm_and_ps(vTemp1,vTemp2);
+    // x and y in bounds? (z and w are don't care)
+    return ((_mm_movemask_ps(vTemp1)&0x3)==0x3) ? XM_CRMASK_CR6BOUNDS : 0;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2IsNaN
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (XMISNAN(V.vector4_f32[0]) ||
+            XMISNAN(V.vector4_f32[1]));
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Mask off the exponent
+    __m128i vTempInf = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMInfinity);
+    // Mask off the mantissa
+    __m128i vTempNan = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMQNaNTest);
+    // Are any of the exponents == 0x7F800000?
+    vTempInf = _mm_cmpeq_epi32(vTempInf,g_XMInfinity);
+    // Are any of the mantissa's zero? (SSE2 doesn't have a neq test)
+    vTempNan = _mm_cmpeq_epi32(vTempNan,g_XMZero);
+    // Perform a not on the NaN test to be true on NON-zero mantissas
+    vTempNan = _mm_andnot_si128(vTempNan,vTempInf);
+    // If x or y are NaN, the signs are true after the merge above
+    return ((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTempNan)[0])&3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector2IsInfinite
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    return (XMISINF(V.vector4_f32[0]) ||
+            XMISINF(V.vector4_f32[1]));
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Mask off the sign bit
+    __m128 vTemp = _mm_and_ps(V,g_XMAbsMask);
+    // Compare to infinity
+    vTemp = _mm_cmpeq_ps(vTemp,g_XMInfinity);
+    // If x or z are infinity, the signs are true.
+    return ((_mm_movemask_ps(vTemp)&3) != 0);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Computation operations
+//------------------------------------------------------------------------------
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2Dot
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_f32[0] =
+    Result.vector4_f32[1] =
+    Result.vector4_f32[2] =
+    Result.vector4_f32[3] = V1.vector4_f32[0] * V2.vector4_f32[0] + V1.vector4_f32[1] * V2.vector4_f32[1];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x and y
+    XMVECTOR vLengthSq = _mm_mul_ps(V1,V2);
+    // vTemp has y splatted
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
+    // x+y
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2Cross
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    FLOAT fCross = (V1.vector4_f32[0] * V2.vector4_f32[1]) - (V1.vector4_f32[1] * V2.vector4_f32[0]);
+    XMVECTOR vResult = { 
+        fCross,
+        fCross,
+        fCross,
+        fCross
+    };
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Swap x and y
+    XMVECTOR vResult = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(0,1,0,1));
+    // Perform the muls
+    vResult = _mm_mul_ps(vResult,V1);
+    // Splat y
+    XMVECTOR vTemp = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(1,1,1,1));
+    // Sub the values
+    vResult = _mm_sub_ss(vResult,vTemp);
+    // Splat the cross product
+    vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,0,0,0));
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2LengthSq
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return XMVector2Dot(V, V);
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x and y
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has y splatted
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
+    // x+y
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    return vLengthSq;
+#else
+    return XMVector2Dot(V, V);
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2ReciprocalLengthEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result = XMVector2LengthSq(V);
+    Result = XMVectorReciprocalSqrtEst(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x and y
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has y splatted
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
+    // x+y
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    vLengthSq = _mm_rsqrt_ss(vLengthSq);
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2ReciprocalLength
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result = XMVector2LengthSq(V);
+    Result = XMVectorReciprocalSqrt(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x and y
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has y splatted
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
+    // x+y
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    vLengthSq = _mm_sqrt_ss(vLengthSq);
+    vLengthSq = _mm_div_ss(g_XMOne,vLengthSq);
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2LengthEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR Result;
+    Result = XMVector2LengthSq(V);
+    Result = XMVectorSqrtEst(Result);
+    return Result;
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x and y
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has y splatted
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
+    // x+y
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    vLengthSq = _mm_sqrt_ss(vLengthSq);
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2Length
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+    Result = XMVector2LengthSq(V);
+    Result = XMVectorSqrt(Result);
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x and y
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has y splatted
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
+    // x+y
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    vLengthSq = _mm_sqrt_ps(vLengthSq);
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// XMVector2NormalizeEst uses a reciprocal estimate and
+// returns QNaN on zero and infinite vectors.
+
+XMFINLINE XMVECTOR XMVector2NormalizeEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+    Result = XMVector2ReciprocalLength(V);
+    Result = XMVectorMultiply(V, Result);
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x and y
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has y splatted
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
+    // x+y
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    vLengthSq = _mm_rsqrt_ss(vLengthSq);
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    vLengthSq = _mm_mul_ps(vLengthSq,V);
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2Normalize
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    FLOAT fLength;
+    XMVECTOR vResult;
+
+    vResult = XMVector2Length( V );
+    fLength = vResult.vector4_f32[0];
+
+    // Prevent divide by zero
+    if (fLength > 0) {
+        fLength = 1.0f/fLength;
+    }
+    
+    vResult.vector4_f32[0] = V.vector4_f32[0]*fLength;
+    vResult.vector4_f32[1] = V.vector4_f32[1]*fLength;
+    vResult.vector4_f32[2] = V.vector4_f32[2]*fLength;
+    vResult.vector4_f32[3] = V.vector4_f32[3]*fLength;
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x and y only
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    // Prepare for the division
+    XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
+    // Create zero with a single instruction
+    XMVECTOR vZeroMask = _mm_setzero_ps();
+    // Test for a divide by zero (Must be FP to detect -0.0)
+    vZeroMask = _mm_cmpneq_ps(vZeroMask,vResult);
+    // Failsafe on zero (Or epsilon) length planes
+    // If the length is infinity, set the elements to zero
+    vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
+    // Reciprocal mul to perform the normalization
+    vResult = _mm_div_ps(V,vResult);
+    // Any that are infinity, set to zero
+    vResult = _mm_and_ps(vResult,vZeroMask);
+    // Select qnan or result based on infinite length
+    XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq,g_XMQNaN);
+    XMVECTOR vTemp2 = _mm_and_ps(vResult,vLengthSq);
+    vResult = _mm_or_ps(vTemp1,vTemp2);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2ClampLength
+(
+    FXMVECTOR V, 
+    FLOAT    LengthMin, 
+    FLOAT    LengthMax
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR ClampMax;
+    XMVECTOR ClampMin;
+
+    ClampMax = XMVectorReplicate(LengthMax);
+    ClampMin = XMVectorReplicate(LengthMin);
+
+    return XMVector2ClampLengthV(V, ClampMin, ClampMax);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR ClampMax = _mm_set_ps1(LengthMax);
+    XMVECTOR ClampMin = _mm_set_ps1(LengthMin);
+    return XMVector2ClampLengthV(V, ClampMin, ClampMax);
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2ClampLengthV
+(
+    FXMVECTOR V, 
+    FXMVECTOR LengthMin, 
+    FXMVECTOR LengthMax
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR ClampLength;
+    XMVECTOR LengthSq;
+    XMVECTOR RcpLength;
+    XMVECTOR Length;
+    XMVECTOR Normal;
+    XMVECTOR Zero;
+    XMVECTOR InfiniteLength;
+    XMVECTOR ZeroLength;
+    XMVECTOR Select;
+    XMVECTOR ControlMax;
+    XMVECTOR ControlMin;
+    XMVECTOR Control;
+    XMVECTOR Result;
+
+    XMASSERT((LengthMin.vector4_f32[1] == LengthMin.vector4_f32[0]));
+    XMASSERT((LengthMax.vector4_f32[1] == LengthMax.vector4_f32[0]));
+    XMASSERT(XMVector2GreaterOrEqual(LengthMin, XMVectorZero()));
+    XMASSERT(XMVector2GreaterOrEqual(LengthMax, XMVectorZero()));
+    XMASSERT(XMVector2GreaterOrEqual(LengthMax, LengthMin));
+
+    LengthSq = XMVector2LengthSq(V);
+
+    Zero = XMVectorZero();
+
+    RcpLength = XMVectorReciprocalSqrt(LengthSq);
+
+    InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity.v);
+    ZeroLength = XMVectorEqual(LengthSq, Zero);
+
+    Length = XMVectorMultiply(LengthSq, RcpLength);
+
+    Normal = XMVectorMultiply(V, RcpLength);
+
+    Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
+    Length = XMVectorSelect(LengthSq, Length, Select);
+    Normal = XMVectorSelect(LengthSq, Normal, Select);
+
+    ControlMax = XMVectorGreater(Length, LengthMax);
+    ControlMin = XMVectorLess(Length, LengthMin);
+
+    ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
+    ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
+
+    Result = XMVectorMultiply(Normal, ClampLength);
+
+    // Preserve the original vector (with no precision loss) if the length falls within the given range
+    Control = XMVectorEqualInt(ControlMax, ControlMin);
+    Result = XMVectorSelect(Result, V, Control);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR ClampLength;
+    XMVECTOR LengthSq;
+    XMVECTOR RcpLength;
+    XMVECTOR Length;
+    XMVECTOR Normal;
+    XMVECTOR InfiniteLength;
+    XMVECTOR ZeroLength;
+    XMVECTOR Select;
+    XMVECTOR ControlMax;
+    XMVECTOR ControlMin;
+    XMVECTOR Control;
+    XMVECTOR Result;
+
+    XMASSERT((XMVectorGetY(LengthMin) == XMVectorGetX(LengthMin)));
+    XMASSERT((XMVectorGetY(LengthMax) == XMVectorGetX(LengthMax)));
+    XMASSERT(XMVector2GreaterOrEqual(LengthMin, g_XMZero));
+    XMASSERT(XMVector2GreaterOrEqual(LengthMax, g_XMZero));
+    XMASSERT(XMVector2GreaterOrEqual(LengthMax, LengthMin));
+    LengthSq = XMVector2LengthSq(V);
+    RcpLength = XMVectorReciprocalSqrt(LengthSq);
+    InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity);
+    ZeroLength = XMVectorEqual(LengthSq, g_XMZero);
+    Length = _mm_mul_ps(LengthSq, RcpLength);
+    Normal = _mm_mul_ps(V, RcpLength);
+    Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
+    Length = XMVectorSelect(LengthSq, Length, Select);
+    Normal = XMVectorSelect(LengthSq, Normal, Select);
+    ControlMax = XMVectorGreater(Length, LengthMax);
+    ControlMin = XMVectorLess(Length, LengthMin);
+    ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
+    ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
+    Result = _mm_mul_ps(Normal, ClampLength);
+    // Preserve the original vector (with no precision loss) if the length falls within the given range
+    Control = XMVectorEqualInt(ControlMax, ControlMin);
+    Result = XMVectorSelect(Result, V, Control);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2Reflect
+(
+    FXMVECTOR Incident, 
+    FXMVECTOR Normal
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    // Result = Incident - (2 * dot(Incident, Normal)) * Normal
+    Result = XMVector2Dot(Incident, Normal);
+    Result = XMVectorAdd(Result, Result);
+    Result = XMVectorNegativeMultiplySubtract(Result, Normal, Incident);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Result = Incident - (2 * dot(Incident, Normal)) * Normal
+    XMVECTOR Result = XMVector2Dot(Incident,Normal);
+    Result = _mm_add_ps(Result, Result);
+    Result = _mm_mul_ps(Result, Normal);
+    Result = _mm_sub_ps(Incident,Result);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2Refract
+(
+    FXMVECTOR Incident, 
+    FXMVECTOR Normal, 
+    FLOAT    RefractionIndex
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR Index;
+    Index = XMVectorReplicate(RefractionIndex);
+    return XMVector2RefractV(Incident, Normal, Index);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR Index = _mm_set_ps1(RefractionIndex);
+    return XMVector2RefractV(Incident,Normal,Index);
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+// Return the refraction of a 2D vector
+XMFINLINE XMVECTOR XMVector2RefractV
+(
+    FXMVECTOR Incident, 
+    FXMVECTOR Normal, 
+    FXMVECTOR RefractionIndex
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    float IDotN;
+    float RX,RY;
+    XMVECTOR vResult;
+    // Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) + 
+    // sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
+    IDotN = (Incident.vector4_f32[0]*Normal.vector4_f32[0])+(Incident.vector4_f32[1]*Normal.vector4_f32[1]);
+    // R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
+    RY = 1.0f-(IDotN*IDotN);
+    RX = 1.0f-(RY*RefractionIndex.vector4_f32[0]*RefractionIndex.vector4_f32[0]);
+    RY = 1.0f-(RY*RefractionIndex.vector4_f32[1]*RefractionIndex.vector4_f32[1]);
+    if (RX>=0.0f) {
+        RX = (RefractionIndex.vector4_f32[0]*Incident.vector4_f32[0])-(Normal.vector4_f32[0]*((RefractionIndex.vector4_f32[0]*IDotN)+sqrtf(RX)));
+    } else {
+        RX = 0.0f;
+    }
+    if (RY>=0.0f) {
+        RY = (RefractionIndex.vector4_f32[1]*Incident.vector4_f32[1])-(Normal.vector4_f32[1]*((RefractionIndex.vector4_f32[1]*IDotN)+sqrtf(RY)));
+    } else {
+        RY = 0.0f;
+    }
+    vResult.vector4_f32[0] = RX;
+    vResult.vector4_f32[1] = RY;
+    vResult.vector4_f32[2] = 0.0f;   
+    vResult.vector4_f32[3] = 0.0f;
+    return vResult;
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) + 
+    // sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
+    // Get the 2D Dot product of Incident-Normal
+    XMVECTOR IDotN = _mm_mul_ps(Incident,Normal);
+    XMVECTOR vTemp = _mm_shuffle_ps(IDotN,IDotN,_MM_SHUFFLE(1,1,1,1));
+    IDotN = _mm_add_ss(IDotN,vTemp);
+    IDotN = _mm_shuffle_ps(IDotN,IDotN,_MM_SHUFFLE(0,0,0,0));
+    // vTemp = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
+    vTemp = _mm_mul_ps(IDotN,IDotN);
+    vTemp = _mm_sub_ps(g_XMOne,vTemp);
+    vTemp = _mm_mul_ps(vTemp,RefractionIndex);
+    vTemp = _mm_mul_ps(vTemp,RefractionIndex);
+    vTemp = _mm_sub_ps(g_XMOne,vTemp);
+    // If any terms are <=0, sqrt() will fail, punt to zero
+    XMVECTOR vMask = _mm_cmpgt_ps(vTemp,g_XMZero);
+    // R = RefractionIndex * IDotN + sqrt(R)
+    vTemp = _mm_sqrt_ps(vTemp);
+    XMVECTOR vResult = _mm_mul_ps(RefractionIndex,IDotN);
+    vTemp = _mm_add_ps(vTemp,vResult);
+    // Result = RefractionIndex * Incident - Normal * R
+    vResult = _mm_mul_ps(RefractionIndex,Incident);
+    vTemp = _mm_mul_ps(vTemp,Normal);
+    vResult = _mm_sub_ps(vResult,vTemp);
+    vResult = _mm_and_ps(vResult,vMask);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2Orthogonal
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_f32[0] = -V.vector4_f32[1];
+    Result.vector4_f32[1] = V.vector4_f32[0];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,2,0,1));
+    vResult = _mm_mul_ps(vResult,g_XMNegateX);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2AngleBetweenNormalsEst
+(
+    FXMVECTOR N1, 
+    FXMVECTOR N2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR NegativeOne;
+    XMVECTOR One;
+    XMVECTOR Result;
+
+    Result = XMVector2Dot(N1, N2);
+    NegativeOne = XMVectorSplatConstant(-1, 0);
+    One = XMVectorSplatOne();
+    Result = XMVectorClamp(Result, NegativeOne, One);
+    Result = XMVectorACosEst(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = XMVector2Dot(N1,N2);
+    // Clamp to -1.0f to 1.0f
+    vResult = _mm_max_ps(vResult,g_XMNegativeOne);
+    vResult = _mm_min_ps(vResult,g_XMOne);;
+    vResult = XMVectorACosEst(vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2AngleBetweenNormals
+(
+    FXMVECTOR N1, 
+    FXMVECTOR N2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR NegativeOne;
+    XMVECTOR One;
+    XMVECTOR Result;
+
+    Result = XMVector2Dot(N1, N2);
+    NegativeOne = XMVectorSplatConstant(-1, 0);
+    One = XMVectorSplatOne();
+    Result = XMVectorClamp(Result, NegativeOne, One);
+    Result = XMVectorACos(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = XMVector2Dot(N1,N2);
+    // Clamp to -1.0f to 1.0f
+    vResult = _mm_max_ps(vResult,g_XMNegativeOne);
+    vResult = _mm_min_ps(vResult,g_XMOne);;
+    vResult = XMVectorACos(vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2AngleBetweenVectors
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR L1;
+    XMVECTOR L2;
+    XMVECTOR Dot;
+    XMVECTOR CosAngle;
+    XMVECTOR NegativeOne;
+    XMVECTOR One;
+    XMVECTOR Result;
+
+    L1 = XMVector2ReciprocalLength(V1);
+    L2 = XMVector2ReciprocalLength(V2);
+
+    Dot = XMVector2Dot(V1, V2);
+
+    L1 = XMVectorMultiply(L1, L2);
+
+    CosAngle = XMVectorMultiply(Dot, L1);
+    NegativeOne = XMVectorSplatConstant(-1, 0);
+    One = XMVectorSplatOne();
+    CosAngle = XMVectorClamp(CosAngle, NegativeOne, One);
+
+    Result = XMVectorACos(CosAngle);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR L1;
+    XMVECTOR L2;
+    XMVECTOR Dot;
+    XMVECTOR CosAngle;
+    XMVECTOR Result;
+    L1 = XMVector2ReciprocalLength(V1);
+    L2 = XMVector2ReciprocalLength(V2);
+    Dot = XMVector2Dot(V1, V2);
+    L1 = _mm_mul_ps(L1, L2);
+    CosAngle = _mm_mul_ps(Dot, L1);
+    CosAngle = XMVectorClamp(CosAngle, g_XMNegativeOne,g_XMOne);
+    Result = XMVectorACos(CosAngle);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2LinePointDistance
+(
+    FXMVECTOR LinePoint1, 
+    FXMVECTOR LinePoint2, 
+    FXMVECTOR Point
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR PointVector;
+    XMVECTOR LineVector;
+    XMVECTOR ReciprocalLengthSq;
+    XMVECTOR PointProjectionScale;
+    XMVECTOR DistanceVector;
+    XMVECTOR Result;
+
+    // Given a vector PointVector from LinePoint1 to Point and a vector
+    // LineVector from LinePoint1 to LinePoint2, the scaled distance 
+    // PointProjectionScale from LinePoint1 to the perpendicular projection
+    // of PointVector onto the line is defined as:
+    //
+    //     PointProjectionScale = dot(PointVector, LineVector) / LengthSq(LineVector)
+
+    PointVector = XMVectorSubtract(Point, LinePoint1);
+    LineVector = XMVectorSubtract(LinePoint2, LinePoint1);
+
+    ReciprocalLengthSq = XMVector2LengthSq(LineVector);
+    ReciprocalLengthSq = XMVectorReciprocal(ReciprocalLengthSq);
+
+    PointProjectionScale = XMVector2Dot(PointVector, LineVector);
+    PointProjectionScale = XMVectorMultiply(PointProjectionScale, ReciprocalLengthSq);
+
+    DistanceVector = XMVectorMultiply(LineVector, PointProjectionScale);
+    DistanceVector = XMVectorSubtract(PointVector, DistanceVector);
+
+    Result = XMVector2Length(DistanceVector);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR PointVector = _mm_sub_ps(Point,LinePoint1);
+    XMVECTOR LineVector = _mm_sub_ps(LinePoint2,LinePoint1);
+    XMVECTOR ReciprocalLengthSq = XMVector2LengthSq(LineVector);
+    XMVECTOR vResult = XMVector2Dot(PointVector,LineVector);
+    vResult = _mm_div_ps(vResult,ReciprocalLengthSq);
+    vResult = _mm_mul_ps(vResult,LineVector);
+    vResult = _mm_sub_ps(PointVector,vResult);
+    vResult = XMVector2Length(vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2IntersectLine
+(
+    FXMVECTOR Line1Point1, 
+    FXMVECTOR Line1Point2, 
+    FXMVECTOR Line2Point1, 
+    CXMVECTOR Line2Point2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR        V1;
+    XMVECTOR        V2;
+    XMVECTOR        V3;
+    XMVECTOR        C1;
+    XMVECTOR        C2;
+    XMVECTOR        Result;
+    CONST XMVECTOR  Zero = XMVectorZero();
+
+    V1 = XMVectorSubtract(Line1Point2, Line1Point1);
+    V2 = XMVectorSubtract(Line2Point2, Line2Point1);
+    V3 = XMVectorSubtract(Line1Point1, Line2Point1);
+
+    C1 = XMVector2Cross(V1, V2);
+    C2 = XMVector2Cross(V2, V3);
+
+    if (XMVector2NearEqual(C1, Zero, g_XMEpsilon.v))
+    {
+        if (XMVector2NearEqual(C2, Zero, g_XMEpsilon.v))
+        {
+            // Coincident
+            Result = g_XMInfinity.v;
+        }
+        else
+        {
+            // Parallel
+            Result = g_XMQNaN.v;
+        }
+    }
+    else
+    {
+        // Intersection point = Line1Point1 + V1 * (C2 / C1)
+        XMVECTOR Scale;
+        Scale = XMVectorReciprocal(C1);
+        Scale = XMVectorMultiply(C2, Scale);
+        Result = XMVectorMultiplyAdd(V1, Scale, Line1Point1);
+    }
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR V1 = _mm_sub_ps(Line1Point2, Line1Point1);
+    XMVECTOR V2 = _mm_sub_ps(Line2Point2, Line2Point1);
+    XMVECTOR V3 = _mm_sub_ps(Line1Point1, Line2Point1);
+    // Generate the cross products
+    XMVECTOR C1 = XMVector2Cross(V1, V2);
+    XMVECTOR C2 = XMVector2Cross(V2, V3);
+    // If C1 is not close to epsilon, use the calculated value
+    XMVECTOR vResultMask = _mm_setzero_ps();
+    vResultMask = _mm_sub_ps(vResultMask,C1);
+    vResultMask = _mm_max_ps(vResultMask,C1);
+    // 0xFFFFFFFF if the calculated value is to be used
+    vResultMask = _mm_cmpgt_ps(vResultMask,g_XMEpsilon);
+    // If C1 is close to epsilon, which fail type is it? INFINITY or NAN?
+    XMVECTOR vFailMask = _mm_setzero_ps();
+    vFailMask = _mm_sub_ps(vFailMask,C2);
+    vFailMask = _mm_max_ps(vFailMask,C2);
+    vFailMask = _mm_cmple_ps(vFailMask,g_XMEpsilon);
+    XMVECTOR vFail = _mm_and_ps(vFailMask,g_XMInfinity);
+    vFailMask = _mm_andnot_ps(vFailMask,g_XMQNaN);
+    // vFail is NAN or INF
+    vFail = _mm_or_ps(vFail,vFailMask);
+    // Intersection point = Line1Point1 + V1 * (C2 / C1)
+    XMVECTOR vResult = _mm_div_ps(C2,C1);
+    vResult = _mm_mul_ps(vResult,V1);
+    vResult = _mm_add_ps(vResult,Line1Point1);
+    // Use result, or failure value
+    vResult = _mm_and_ps(vResult,vResultMask);
+    vResultMask = _mm_andnot_ps(vResultMask,vFail);
+    vResult = _mm_or_ps(vResult,vResultMask);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2Transform
+(
+    FXMVECTOR V, 
+    CXMMATRIX M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Result;
+
+    Y = XMVectorSplatY(V);
+    X = XMVectorSplatX(V);
+
+    Result = XMVectorMultiplyAdd(Y, M.r[1], M.r[3]);
+    Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
+    vResult = _mm_mul_ps(vResult,M.r[0]);
+    XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
+    vTemp = _mm_mul_ps(vTemp,M.r[1]);
+    vResult = _mm_add_ps(vResult,vTemp);
+    vResult = _mm_add_ps(vResult,M.r[3]);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT4* XMVector2TransformStream
+(
+    XMFLOAT4*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT2* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    CXMMATRIX       M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V;
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Result;
+    size_t   i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*    pOutputVector = (BYTE*)pOutputStream;
+
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat2((const XMFLOAT2*)pInputVector);
+        Y = XMVectorSplatY(V);
+        X = XMVectorSplatX(V);
+//        Y = XMVectorReplicate(((XMFLOAT2*)pInputVector)->y);
+//        X = XMVectorReplicate(((XMFLOAT2*)pInputVector)->x);
+
+        Result = XMVectorMultiplyAdd(Y, M.r[1], M.r[3]);
+        Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+        XMStoreFloat4((XMFLOAT4*)pOutputVector, Result);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+    size_t i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE* pOutputVector = (BYTE*)pOutputStream;
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2*>(pInputVector)->x);
+        XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2*>(pInputVector)->y);
+        vResult = _mm_mul_ps(vResult,M.r[1]);
+        vResult = _mm_add_ps(vResult,M.r[3]);
+        X = _mm_mul_ps(X,M.r[0]);
+        vResult = _mm_add_ps(vResult,X);
+        _mm_storeu_ps(reinterpret_cast<float*>(pOutputVector),vResult);
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+    return pOutputStream;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT4* XMVector2TransformStreamNC
+(
+    XMFLOAT4*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT2* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    CXMMATRIX       M
+)
+{
+#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS) || defined(_XM_SSE_INTRINSICS_)
+    return XMVector2TransformStream( pOutputStream, OutputStride, pInputStream, InputStride, VectorCount, M );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2TransformCoord
+(
+    FXMVECTOR V, 
+    CXMMATRIX M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR InverseW;
+    XMVECTOR Result;
+
+    Y = XMVectorSplatY(V);
+    X = XMVectorSplatX(V);
+
+    Result = XMVectorMultiplyAdd(Y, M.r[1], M.r[3]);
+    Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+    InverseW = XMVectorSplatW(Result);
+    InverseW = XMVectorReciprocal(InverseW);
+
+    Result = XMVectorMultiply(Result, InverseW);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
+    vResult = _mm_mul_ps(vResult,M.r[0]);
+    XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
+    vTemp = _mm_mul_ps(vTemp,M.r[1]);
+    vResult = _mm_add_ps(vResult,vTemp);
+    vResult = _mm_add_ps(vResult,M.r[3]);
+    vTemp = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,3,3,3));
+    vResult = _mm_div_ps(vResult,vTemp);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT2* XMVector2TransformCoordStream
+(
+    XMFLOAT2*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT2* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    CXMMATRIX       M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V;
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR InverseW;
+    XMVECTOR Result;
+    size_t   i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*    pOutputVector = (BYTE*)pOutputStream;
+
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat2((const XMFLOAT2*)pInputVector);
+        Y = XMVectorSplatY(V);
+        X = XMVectorSplatX(V);
+//        Y = XMVectorReplicate(((XMFLOAT2*)pInputVector)->y);
+//        X = XMVectorReplicate(((XMFLOAT2*)pInputVector)->x);
+
+        Result = XMVectorMultiplyAdd(Y, M.r[1], M.r[3]);
+        Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+        InverseW = XMVectorSplatW(Result);
+        InverseW = XMVectorReciprocal(InverseW);
+
+        Result = XMVectorMultiply(Result, InverseW);
+
+        XMStoreFloat2((XMFLOAT2*)pOutputVector, Result);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+    size_t i;
+    CONST BYTE *pInputVector = (CONST BYTE*)pInputStream;
+    BYTE *pOutputVector = (BYTE*)pOutputStream;
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2*>(pInputVector)->x);
+        XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2*>(pInputVector)->y);
+        vResult = _mm_mul_ps(vResult,M.r[1]);
+        vResult = _mm_add_ps(vResult,M.r[3]);
+        X = _mm_mul_ps(X,M.r[0]);
+        vResult = _mm_add_ps(vResult,X);
+        X = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,3,3,3));
+        vResult = _mm_div_ps(vResult,X);
+        _mm_store_sd(reinterpret_cast<double *>(pOutputVector),reinterpret_cast<__m128d *>(&vResult)[0]);
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+    return pOutputStream;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector2TransformNormal
+(
+    FXMVECTOR V, 
+    CXMMATRIX M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Result;
+
+    Y = XMVectorSplatY(V);
+    X = XMVectorSplatX(V);
+
+    Result = XMVectorMultiply(Y, M.r[1]);
+    Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
+    vResult = _mm_mul_ps(vResult,M.r[0]);
+    XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
+    vTemp = _mm_mul_ps(vTemp,M.r[1]);
+    vResult = _mm_add_ps(vResult,vTemp);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT2* XMVector2TransformNormalStream
+(
+    XMFLOAT2*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT2* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    CXMMATRIX       M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V;
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Result;
+    size_t   i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*    pOutputVector = (BYTE*)pOutputStream;
+
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat2((const XMFLOAT2*)pInputVector);
+        Y = XMVectorSplatY(V);
+        X = XMVectorSplatX(V);
+//        Y = XMVectorReplicate(((XMFLOAT2*)pInputVector)->y);
+//        X = XMVectorReplicate(((XMFLOAT2*)pInputVector)->x);
+
+        Result = XMVectorMultiply(Y, M.r[1]);
+        Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+        XMStoreFloat2((XMFLOAT2*)pOutputVector, Result);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+    size_t i;
+    CONST BYTE*pInputVector = (CONST BYTE*)pInputStream;
+    BYTE *pOutputVector = (BYTE*)pOutputStream;
+    for (i = 0; i < VectorCount; i++)
+    {
+        XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2 *>(pInputVector)->x);
+        XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2 *>(pInputVector)->y);
+        vResult = _mm_mul_ps(vResult,M.r[1]);
+        X = _mm_mul_ps(X,M.r[0]);
+        vResult = _mm_add_ps(vResult,X);
+        _mm_store_sd(reinterpret_cast<double*>(pOutputVector),reinterpret_cast<const __m128d *>(&vResult)[0]);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+/****************************************************************************
+ *
+ * 3D Vector
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+// Comparison operations
+//------------------------------------------------------------------------------
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3Equal
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] == V2.vector4_f32[0]) && (V1.vector4_f32[1] == V2.vector4_f32[1]) && (V1.vector4_f32[2] == V2.vector4_f32[2])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
+    return (((_mm_movemask_ps(vTemp)&7)==7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector3EqualR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector3EqualR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT CR = 0;
+    if ((V1.vector4_f32[0] == V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] == V2.vector4_f32[1]) &&
+        (V1.vector4_f32[2] == V2.vector4_f32[2]))
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if ((V1.vector4_f32[0] != V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] != V2.vector4_f32[1]) &&
+        (V1.vector4_f32[2] != V2.vector4_f32[2]))
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
+    int iTest = _mm_movemask_ps(vTemp)&7;
+    UINT CR = 0;
+    if (iTest==7)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3EqualInt
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_u32[0] == V2.vector4_u32[0]) && (V1.vector4_u32[1] == V2.vector4_u32[1]) && (V1.vector4_u32[2] == V2.vector4_u32[2])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
+    return (((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&7)==7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector3EqualIntR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector3EqualIntR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT CR = 0;
+    if ((V1.vector4_u32[0] == V2.vector4_u32[0]) && 
+        (V1.vector4_u32[1] == V2.vector4_u32[1]) &&
+        (V1.vector4_u32[2] == V2.vector4_u32[2]))
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if ((V1.vector4_u32[0] != V2.vector4_u32[0]) && 
+        (V1.vector4_u32[1] != V2.vector4_u32[1]) &&
+        (V1.vector4_u32[2] != V2.vector4_u32[2]))
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
+    int iTemp = _mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&7;
+    UINT CR = 0;
+    if (iTemp==7)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTemp)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3NearEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2, 
+    FXMVECTOR Epsilon
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    FLOAT dx, dy, dz;
+
+    dx = fabsf(V1.vector4_f32[0]-V2.vector4_f32[0]);
+    dy = fabsf(V1.vector4_f32[1]-V2.vector4_f32[1]);
+    dz = fabsf(V1.vector4_f32[2]-V2.vector4_f32[2]);
+    return (((dx <= Epsilon.vector4_f32[0]) &&
+            (dy <= Epsilon.vector4_f32[1]) &&
+            (dz <= Epsilon.vector4_f32[2])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Get the difference
+    XMVECTOR vDelta = _mm_sub_ps(V1,V2);
+    // Get the absolute value of the difference
+    XMVECTOR vTemp = _mm_setzero_ps();
+    vTemp = _mm_sub_ps(vTemp,vDelta);
+    vTemp = _mm_max_ps(vTemp,vDelta);
+    vTemp = _mm_cmple_ps(vTemp,Epsilon);
+    // w is don't care
+    return (((_mm_movemask_ps(vTemp)&7)==0x7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3NotEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] != V2.vector4_f32[0]) || (V1.vector4_f32[1] != V2.vector4_f32[1]) || (V1.vector4_f32[2] != V2.vector4_f32[2])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
+    return (((_mm_movemask_ps(vTemp)&7)!=7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAnyFalse(XMVector3EqualR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3NotEqualInt
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_u32[0] != V2.vector4_u32[0]) || (V1.vector4_u32[1] != V2.vector4_u32[1]) || (V1.vector4_u32[2] != V2.vector4_u32[2])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
+    return (((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&7)!=7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAnyFalse(XMVector3EqualIntR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3Greater
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] > V2.vector4_f32[0]) && (V1.vector4_f32[1] > V2.vector4_f32[1]) && (V1.vector4_f32[2] > V2.vector4_f32[2])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
+    return (((_mm_movemask_ps(vTemp)&7)==7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector3GreaterR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector3GreaterR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT CR = 0;
+    if ((V1.vector4_f32[0] > V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] > V2.vector4_f32[1]) &&
+        (V1.vector4_f32[2] > V2.vector4_f32[2]))
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if ((V1.vector4_f32[0] <= V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] <= V2.vector4_f32[1]) &&
+        (V1.vector4_f32[2] <= V2.vector4_f32[2]))
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
+    UINT CR = 0;
+    int iTest = _mm_movemask_ps(vTemp)&7;
+    if (iTest==7) 
+    {
+        CR =  XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3GreaterOrEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] >= V2.vector4_f32[0]) && (V1.vector4_f32[1] >= V2.vector4_f32[1]) && (V1.vector4_f32[2] >= V2.vector4_f32[2])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
+    return (((_mm_movemask_ps(vTemp)&7)==7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector3GreaterOrEqualR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector3GreaterOrEqualR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    UINT CR = 0;
+    if ((V1.vector4_f32[0] >= V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] >= V2.vector4_f32[1]) &&
+        (V1.vector4_f32[2] >= V2.vector4_f32[2]))
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if ((V1.vector4_f32[0] < V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] < V2.vector4_f32[1]) &&
+        (V1.vector4_f32[2] < V2.vector4_f32[2]))
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
+    UINT CR = 0;
+    int iTest = _mm_movemask_ps(vTemp)&7;
+    if (iTest==7) 
+    {
+        CR =  XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3Less
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] < V2.vector4_f32[0]) && (V1.vector4_f32[1] < V2.vector4_f32[1]) && (V1.vector4_f32[2] < V2.vector4_f32[2])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmplt_ps(V1,V2);
+    return (((_mm_movemask_ps(vTemp)&7)==7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector3GreaterR(V2, V1));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3LessOrEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] <= V2.vector4_f32[0]) && (V1.vector4_f32[1] <= V2.vector4_f32[1]) && (V1.vector4_f32[2] <= V2.vector4_f32[2])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmple_ps(V1,V2);
+    return (((_mm_movemask_ps(vTemp)&7)==7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+    return XMComparisonAllTrue(XMVector3GreaterOrEqualR(V2, V1));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3InBounds
+(
+    FXMVECTOR V, 
+    FXMVECTOR Bounds
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) && 
+        (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) &&
+        (V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Test if less than or equal
+    XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
+    // Negate the bounds
+    XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
+    // Test if greater or equal (Reversed)
+    vTemp2 = _mm_cmple_ps(vTemp2,V);
+    // Blend answers
+    vTemp1 = _mm_and_ps(vTemp1,vTemp2);
+    // x,y and z in bounds? (w is don't care)
+    return (((_mm_movemask_ps(vTemp1)&0x7)==0x7) != 0);
+#else
+    return XMComparisonAllInBounds(XMVector3InBoundsR(V, Bounds));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector3InBoundsR
+(
+    FXMVECTOR V, 
+    FXMVECTOR Bounds
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT CR = 0;
+    if ((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) && 
+        (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) &&
+        (V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]))
+    {
+        CR = XM_CRMASK_CR6BOUNDS;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Test if less than or equal
+    XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
+    // Negate the bounds
+    XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
+    // Test if greater or equal (Reversed)
+    vTemp2 = _mm_cmple_ps(vTemp2,V);
+    // Blend answers
+    vTemp1 = _mm_and_ps(vTemp1,vTemp2);
+    // x,y and z in bounds? (w is don't care)
+    return ((_mm_movemask_ps(vTemp1)&0x7)==0x7) ? XM_CRMASK_CR6BOUNDS : 0;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3IsNaN
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    return (XMISNAN(V.vector4_f32[0]) ||
+            XMISNAN(V.vector4_f32[1]) ||
+            XMISNAN(V.vector4_f32[2]));
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Mask off the exponent
+    __m128i vTempInf = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMInfinity);
+    // Mask off the mantissa
+    __m128i vTempNan = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMQNaNTest);
+    // Are any of the exponents == 0x7F800000?
+    vTempInf = _mm_cmpeq_epi32(vTempInf,g_XMInfinity);
+    // Are any of the mantissa's zero? (SSE2 doesn't have a neq test)
+    vTempNan = _mm_cmpeq_epi32(vTempNan,g_XMZero);
+    // Perform a not on the NaN test to be true on NON-zero mantissas
+    vTempNan = _mm_andnot_si128(vTempNan,vTempInf);
+    // If x, y or z are NaN, the signs are true after the merge above
+    return ((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTempNan)[0])&7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector3IsInfinite
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (XMISINF(V.vector4_f32[0]) ||
+            XMISINF(V.vector4_f32[1]) ||
+            XMISINF(V.vector4_f32[2]));
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Mask off the sign bit
+    __m128 vTemp = _mm_and_ps(V,g_XMAbsMask);
+    // Compare to infinity
+    vTemp = _mm_cmpeq_ps(vTemp,g_XMInfinity);
+    // If x,y or z are infinity, the signs are true.
+    return ((_mm_movemask_ps(vTemp)&7) != 0);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Computation operations
+//------------------------------------------------------------------------------
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3Dot
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    FLOAT fValue = V1.vector4_f32[0] * V2.vector4_f32[0] + V1.vector4_f32[1] * V2.vector4_f32[1] + V1.vector4_f32[2] * V2.vector4_f32[2];
+    XMVECTOR vResult = {
+        fValue,
+        fValue,
+        fValue,
+        fValue
+    };            
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product
+    XMVECTOR vDot = _mm_mul_ps(V1,V2);
+    // x=Dot.vector4_f32[1], y=Dot.vector4_f32[2]
+    XMVECTOR vTemp = _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(2,1,2,1));
+    // Result.vector4_f32[0] = x+y
+    vDot = _mm_add_ss(vDot,vTemp);
+    // x=Dot.vector4_f32[2]
+    vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
+    // Result.vector4_f32[0] = (x+y)+z
+    vDot = _mm_add_ss(vDot,vTemp);
+    // Splat x
+    return _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(0,0,0,0));
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3Cross
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR vResult = {
+        (V1.vector4_f32[1] * V2.vector4_f32[2]) - (V1.vector4_f32[2] * V2.vector4_f32[1]),
+        (V1.vector4_f32[2] * V2.vector4_f32[0]) - (V1.vector4_f32[0] * V2.vector4_f32[2]),
+        (V1.vector4_f32[0] * V2.vector4_f32[1]) - (V1.vector4_f32[1] * V2.vector4_f32[0]),
+        0.0f
+    };
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // y1,z1,x1,w1
+    XMVECTOR vTemp1 = _mm_shuffle_ps(V1,V1,_MM_SHUFFLE(3,0,2,1));
+    // z2,x2,y2,w2
+    XMVECTOR vTemp2 = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(3,1,0,2));
+    // Perform the left operation
+    XMVECTOR vResult = _mm_mul_ps(vTemp1,vTemp2);
+    // z1,x1,y1,w1
+    vTemp1 = _mm_shuffle_ps(vTemp1,vTemp1,_MM_SHUFFLE(3,0,2,1));
+    // y2,z2,x2,w2
+    vTemp2 = _mm_shuffle_ps(vTemp2,vTemp2,_MM_SHUFFLE(3,1,0,2));
+    // Perform the right operation
+    vTemp1 = _mm_mul_ps(vTemp1,vTemp2);
+    // Subract the right from left, and return answer
+    vResult = _mm_sub_ps(vResult,vTemp1);
+    // Set w to zero
+    return _mm_and_ps(vResult,g_XMMask3);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3LengthSq
+(
+    FXMVECTOR V
+)
+{
+    return XMVector3Dot(V, V);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3ReciprocalLengthEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result = XMVector3LengthSq(V);
+    Result = XMVectorReciprocalSqrtEst(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x,y and z
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has z and y
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,2,1,2));
+    // x+z, y
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    // y,y,y,y
+    vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
+    // x+z+y,??,??,??
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    // Splat the length squared
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    // Get the reciprocal
+    vLengthSq = _mm_rsqrt_ps(vLengthSq);
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3ReciprocalLength
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result = XMVector3LengthSq(V);
+    Result = XMVectorReciprocalSqrt(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+     // Perform the dot product
+    XMVECTOR vDot = _mm_mul_ps(V,V);
+    // x=Dot.y, y=Dot.z
+    XMVECTOR vTemp = _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(2,1,2,1));
+    // Result.x = x+y
+    vDot = _mm_add_ss(vDot,vTemp);
+    // x=Dot.z
+    vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
+    // Result.x = (x+y)+z
+    vDot = _mm_add_ss(vDot,vTemp);
+    // Splat x
+    vDot = _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(0,0,0,0));
+    // Get the reciprocal
+    vDot = _mm_sqrt_ps(vDot);
+    // Get the reciprocal
+    vDot = _mm_div_ps(g_XMOne,vDot);
+    return vDot;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3LengthEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result = XMVector3LengthSq(V);
+    Result = XMVectorSqrtEst(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x,y and z
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has z and y
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,2,1,2));
+    // x+z, y
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    // y,y,y,y
+    vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
+    // x+z+y,??,??,??
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    // Splat the length squared
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    // Get the length
+    vLengthSq = _mm_sqrt_ps(vLengthSq);
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3Length
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result = XMVector3LengthSq(V);
+    Result = XMVectorSqrt(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x,y and z
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has z and y
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,2,1,2));
+    // x+z, y
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    // y,y,y,y
+    vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
+    // x+z+y,??,??,??
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    // Splat the length squared
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    // Get the length
+    vLengthSq = _mm_sqrt_ps(vLengthSq);
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// XMVector3NormalizeEst uses a reciprocal estimate and
+// returns QNaN on zero and infinite vectors.
+
+XMFINLINE XMVECTOR XMVector3NormalizeEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+    Result = XMVector3ReciprocalLength(V);
+    Result = XMVectorMultiply(V, Result);
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+     // Perform the dot product
+    XMVECTOR vDot = _mm_mul_ps(V,V);
+    // x=Dot.y, y=Dot.z
+    XMVECTOR vTemp = _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(2,1,2,1));
+    // Result.x = x+y
+    vDot = _mm_add_ss(vDot,vTemp);
+    // x=Dot.z
+    vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
+    // Result.x = (x+y)+z
+    vDot = _mm_add_ss(vDot,vTemp);
+    // Splat x
+    vDot = _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(0,0,0,0));
+    // Get the reciprocal
+    vDot = _mm_rsqrt_ps(vDot);
+    // Perform the normalization
+    vDot = _mm_mul_ps(vDot,V);
+    return vDot;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3Normalize
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    FLOAT fLength;
+    XMVECTOR vResult;
+
+    vResult = XMVector3Length( V );
+    fLength = vResult.vector4_f32[0];
+
+    // Prevent divide by zero
+    if (fLength > 0) {
+        fLength = 1.0f/fLength;
+    }
+    
+    vResult.vector4_f32[0] = V.vector4_f32[0]*fLength;
+    vResult.vector4_f32[1] = V.vector4_f32[1]*fLength;
+    vResult.vector4_f32[2] = V.vector4_f32[2]*fLength;
+    vResult.vector4_f32[3] = V.vector4_f32[3]*fLength;
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x,y and z only
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,1,2,1));
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
+    vLengthSq = _mm_add_ss(vLengthSq,vTemp);
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
+    // Prepare for the division
+    XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
+    // Create zero with a single instruction
+    XMVECTOR vZeroMask = _mm_setzero_ps();
+    // Test for a divide by zero (Must be FP to detect -0.0)
+    vZeroMask = _mm_cmpneq_ps(vZeroMask,vResult);
+    // Failsafe on zero (Or epsilon) length planes
+    // If the length is infinity, set the elements to zero
+    vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
+    // Divide to perform the normalization
+    vResult = _mm_div_ps(V,vResult);
+    // Any that are infinity, set to zero
+    vResult = _mm_and_ps(vResult,vZeroMask);
+    // Select qnan or result based on infinite length
+    XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq,g_XMQNaN);
+    XMVECTOR vTemp2 = _mm_and_ps(vResult,vLengthSq);
+    vResult = _mm_or_ps(vTemp1,vTemp2);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3ClampLength
+(
+    FXMVECTOR V, 
+    FLOAT    LengthMin, 
+    FLOAT    LengthMax
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR ClampMax;
+    XMVECTOR ClampMin;
+
+    ClampMax = XMVectorReplicate(LengthMax);
+    ClampMin = XMVectorReplicate(LengthMin);
+
+    return XMVector3ClampLengthV(V, ClampMin, ClampMax);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR ClampMax = _mm_set_ps1(LengthMax);
+    XMVECTOR ClampMin = _mm_set_ps1(LengthMin);
+    return XMVector3ClampLengthV(V,ClampMin,ClampMax);
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3ClampLengthV
+(
+    FXMVECTOR V, 
+    FXMVECTOR LengthMin, 
+    FXMVECTOR LengthMax
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR ClampLength;
+    XMVECTOR LengthSq;
+    XMVECTOR RcpLength;
+    XMVECTOR Length;
+    XMVECTOR Normal;
+    XMVECTOR Zero;
+    XMVECTOR InfiniteLength;
+    XMVECTOR ZeroLength;
+    XMVECTOR Select;
+    XMVECTOR ControlMax;
+    XMVECTOR ControlMin;
+    XMVECTOR Control;
+    XMVECTOR Result;
+
+    XMASSERT((LengthMin.vector4_f32[1] == LengthMin.vector4_f32[0]) && (LengthMin.vector4_f32[2] == LengthMin.vector4_f32[0]));
+    XMASSERT((LengthMax.vector4_f32[1] == LengthMax.vector4_f32[0]) && (LengthMax.vector4_f32[2] == LengthMax.vector4_f32[0]));
+    XMASSERT(XMVector3GreaterOrEqual(LengthMin, XMVectorZero()));
+    XMASSERT(XMVector3GreaterOrEqual(LengthMax, XMVectorZero()));
+    XMASSERT(XMVector3GreaterOrEqual(LengthMax, LengthMin));
+
+    LengthSq = XMVector3LengthSq(V);
+
+    Zero = XMVectorZero();
+
+    RcpLength = XMVectorReciprocalSqrt(LengthSq);
+
+    InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity.v);
+    ZeroLength = XMVectorEqual(LengthSq, Zero);
+
+    Normal = XMVectorMultiply(V, RcpLength);
+
+    Length = XMVectorMultiply(LengthSq, RcpLength);
+
+    Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
+    Length = XMVectorSelect(LengthSq, Length, Select);
+    Normal = XMVectorSelect(LengthSq, Normal, Select);
+
+    ControlMax = XMVectorGreater(Length, LengthMax);
+    ControlMin = XMVectorLess(Length, LengthMin);
+
+    ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
+    ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
+
+    Result = XMVectorMultiply(Normal, ClampLength);
+
+    // Preserve the original vector (with no precision loss) if the length falls within the given range
+    Control = XMVectorEqualInt(ControlMax, ControlMin);
+    Result = XMVectorSelect(Result, V, Control);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR ClampLength;
+    XMVECTOR LengthSq;
+    XMVECTOR RcpLength;
+    XMVECTOR Length;
+    XMVECTOR Normal;
+    XMVECTOR InfiniteLength;
+    XMVECTOR ZeroLength;
+    XMVECTOR Select;
+    XMVECTOR ControlMax;
+    XMVECTOR ControlMin;
+    XMVECTOR Control;
+    XMVECTOR Result;
+
+    XMASSERT((XMVectorGetY(LengthMin) == XMVectorGetX(LengthMin)) && (XMVectorGetZ(LengthMin) == XMVectorGetX(LengthMin)));
+    XMASSERT((XMVectorGetY(LengthMax) == XMVectorGetX(LengthMax)) && (XMVectorGetZ(LengthMax) == XMVectorGetX(LengthMax)));
+    XMASSERT(XMVector3GreaterOrEqual(LengthMin, g_XMZero));
+    XMASSERT(XMVector3GreaterOrEqual(LengthMax, g_XMZero));
+    XMASSERT(XMVector3GreaterOrEqual(LengthMax, LengthMin));
+
+    LengthSq = XMVector3LengthSq(V);
+    RcpLength = XMVectorReciprocalSqrt(LengthSq);
+    InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity);
+    ZeroLength = XMVectorEqual(LengthSq,g_XMZero);
+    Normal = _mm_mul_ps(V, RcpLength);
+    Length = _mm_mul_ps(LengthSq, RcpLength);
+    Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
+    Length = XMVectorSelect(LengthSq, Length, Select);
+    Normal = XMVectorSelect(LengthSq, Normal, Select);
+    ControlMax = XMVectorGreater(Length, LengthMax);
+    ControlMin = XMVectorLess(Length, LengthMin);
+    ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
+    ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
+    Result = _mm_mul_ps(Normal, ClampLength);
+    // Preserve the original vector (with no precision loss) if the length falls within the given range
+    Control = XMVectorEqualInt(ControlMax, ControlMin);
+    Result = XMVectorSelect(Result, V, Control);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3Reflect
+(
+    FXMVECTOR Incident, 
+    FXMVECTOR Normal
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    // Result = Incident - (2 * dot(Incident, Normal)) * Normal
+    Result = XMVector3Dot(Incident, Normal);
+    Result = XMVectorAdd(Result, Result);
+    Result = XMVectorNegativeMultiplySubtract(Result, Normal, Incident);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Result = Incident - (2 * dot(Incident, Normal)) * Normal
+    XMVECTOR Result = XMVector3Dot(Incident, Normal);
+    Result = _mm_add_ps(Result, Result);
+    Result = _mm_mul_ps(Result, Normal);
+    Result = _mm_sub_ps(Incident,Result);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3Refract
+(
+    FXMVECTOR Incident, 
+    FXMVECTOR Normal, 
+    FLOAT    RefractionIndex
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Index;
+    Index = XMVectorReplicate(RefractionIndex);
+    return XMVector3RefractV(Incident, Normal, Index);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR Index = _mm_set_ps1(RefractionIndex);
+    return XMVector3RefractV(Incident,Normal,Index);
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3RefractV
+(
+    FXMVECTOR Incident, 
+    FXMVECTOR Normal, 
+    FXMVECTOR RefractionIndex
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR        IDotN;
+    XMVECTOR        R;
+    CONST XMVECTOR  Zero = XMVectorZero();
+
+    // Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) + 
+    // sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
+
+    IDotN = XMVector3Dot(Incident, Normal);
+
+    // R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
+    R = XMVectorNegativeMultiplySubtract(IDotN, IDotN, g_XMOne.v);
+    R = XMVectorMultiply(R, RefractionIndex);
+    R = XMVectorNegativeMultiplySubtract(R, RefractionIndex, g_XMOne.v);
+
+    if (XMVector4LessOrEqual(R, Zero))
+    {
+        // Total internal reflection
+        return Zero;
+    }
+    else
+    {
+        XMVECTOR Result;
+
+        // R = RefractionIndex * IDotN + sqrt(R)
+        R = XMVectorSqrt(R);
+        R = XMVectorMultiplyAdd(RefractionIndex, IDotN, R);
+
+        // Result = RefractionIndex * Incident - Normal * R
+        Result = XMVectorMultiply(RefractionIndex, Incident);
+        Result = XMVectorNegativeMultiplySubtract(Normal, R, Result);
+
+        return Result;
+    }
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) + 
+    // sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
+    XMVECTOR IDotN = XMVector3Dot(Incident, Normal);
+    // R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
+    XMVECTOR R = _mm_mul_ps(IDotN, IDotN);
+    R = _mm_sub_ps(g_XMOne,R);
+    R = _mm_mul_ps(R, RefractionIndex);
+    R = _mm_mul_ps(R, RefractionIndex);
+    R = _mm_sub_ps(g_XMOne,R);
+
+    XMVECTOR vResult = _mm_cmple_ps(R,g_XMZero);
+    if (_mm_movemask_ps(vResult)==0x0f)
+    {
+        // Total internal reflection
+        vResult = g_XMZero;
+    }
+    else
+    {
+        // R = RefractionIndex * IDotN + sqrt(R)
+        R = _mm_sqrt_ps(R);
+        vResult = _mm_mul_ps(RefractionIndex,IDotN);
+        R = _mm_add_ps(R,vResult);
+        // Result = RefractionIndex * Incident - Normal * R
+        vResult = _mm_mul_ps(RefractionIndex, Incident);
+        R = _mm_mul_ps(R,Normal);
+        vResult = _mm_sub_ps(vResult,R);
+    }
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3Orthogonal
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR NegativeV;
+    XMVECTOR Z, YZYY;
+    XMVECTOR ZIsNegative, YZYYIsNegative;
+    XMVECTOR S, D;
+    XMVECTOR R0, R1;
+    XMVECTOR Select;
+    XMVECTOR Zero;
+    XMVECTOR Result;
+    static CONST XMVECTORU32 Permute1X0X0X0X = {XM_PERMUTE_1X, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_0X};
+    static CONST XMVECTORU32 Permute0Y0Z0Y0Y= {XM_PERMUTE_0Y, XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_0Y};
+
+    Zero = XMVectorZero();
+    Z = XMVectorSplatZ(V);
+    YZYY = XMVectorPermute(V, V, Permute0Y0Z0Y0Y.v);
+
+    NegativeV = XMVectorSubtract(Zero, V);
+
+    ZIsNegative = XMVectorLess(Z, Zero);
+    YZYYIsNegative = XMVectorLess(YZYY, Zero);
+
+    S = XMVectorAdd(YZYY, Z);
+    D = XMVectorSubtract(YZYY, Z);
+
+    Select = XMVectorEqualInt(ZIsNegative, YZYYIsNegative);
+
+    R0 = XMVectorPermute(NegativeV, S, Permute1X0X0X0X.v);
+    R1 = XMVectorPermute(V, D, Permute1X0X0X0X.v);
+
+    Result = XMVectorSelect(R1, R0, Select);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR NegativeV;
+    XMVECTOR Z, YZYY;
+    XMVECTOR ZIsNegative, YZYYIsNegative;
+    XMVECTOR S, D;
+    XMVECTOR R0, R1;
+    XMVECTOR Select;
+    XMVECTOR Zero;
+    XMVECTOR Result;
+    static CONST XMVECTORI32 Permute1X0X0X0X = {XM_PERMUTE_1X, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_0X};
+    static CONST XMVECTORI32 Permute0Y0Z0Y0Y= {XM_PERMUTE_0Y, XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_0Y};
+
+    Zero = XMVectorZero();
+    Z = XMVectorSplatZ(V);
+    YZYY = XMVectorPermute(V, V, Permute0Y0Z0Y0Y);
+
+    NegativeV = _mm_sub_ps(Zero, V);
+
+    ZIsNegative = XMVectorLess(Z, Zero);
+    YZYYIsNegative = XMVectorLess(YZYY, Zero);
+
+    S = _mm_add_ps(YZYY, Z);
+    D = _mm_sub_ps(YZYY, Z);
+
+    Select = XMVectorEqualInt(ZIsNegative, YZYYIsNegative);
+
+    R0 = XMVectorPermute(NegativeV, S, Permute1X0X0X0X);
+    R1 = XMVectorPermute(V, D,Permute1X0X0X0X);
+    Result = XMVectorSelect(R1, R0, Select);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3AngleBetweenNormalsEst
+(
+    FXMVECTOR N1, 
+    FXMVECTOR N2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+    XMVECTOR NegativeOne;
+    XMVECTOR One;
+
+    Result = XMVector3Dot(N1, N2);
+    NegativeOne = XMVectorSplatConstant(-1, 0);
+    One = XMVectorSplatOne();
+    Result = XMVectorClamp(Result, NegativeOne, One);
+    Result = XMVectorACosEst(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = XMVector3Dot(N1,N2);
+    // Clamp to -1.0f to 1.0f
+    vResult = _mm_max_ps(vResult,g_XMNegativeOne);
+    vResult = _mm_min_ps(vResult,g_XMOne);
+    vResult = XMVectorACosEst(vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3AngleBetweenNormals
+(
+    FXMVECTOR N1, 
+    FXMVECTOR N2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+    XMVECTOR NegativeOne;
+    XMVECTOR One;
+
+    Result = XMVector3Dot(N1, N2);
+    NegativeOne = XMVectorSplatConstant(-1, 0);
+    One = XMVectorSplatOne();
+    Result = XMVectorClamp(Result, NegativeOne, One);
+    Result = XMVectorACos(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = XMVector3Dot(N1,N2);
+    // Clamp to -1.0f to 1.0f
+    vResult = _mm_max_ps(vResult,g_XMNegativeOne);
+    vResult = _mm_min_ps(vResult,g_XMOne);
+    vResult = XMVectorACos(vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3AngleBetweenVectors
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR L1;
+    XMVECTOR L2;
+    XMVECTOR Dot;
+    XMVECTOR CosAngle;
+    XMVECTOR NegativeOne;
+    XMVECTOR One;
+    XMVECTOR Result;
+
+    L1 = XMVector3ReciprocalLength(V1);
+    L2 = XMVector3ReciprocalLength(V2);
+
+    Dot = XMVector3Dot(V1, V2);
+
+    L1 = XMVectorMultiply(L1, L2);
+
+    NegativeOne = XMVectorSplatConstant(-1, 0);
+    One = XMVectorSplatOne();
+
+    CosAngle = XMVectorMultiply(Dot, L1);
+
+    CosAngle = XMVectorClamp(CosAngle, NegativeOne, One);
+
+    Result = XMVectorACos(CosAngle);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR L1;
+    XMVECTOR L2;
+    XMVECTOR Dot;
+    XMVECTOR CosAngle;
+    XMVECTOR Result;
+
+    L1 = XMVector3ReciprocalLength(V1);
+    L2 = XMVector3ReciprocalLength(V2);
+    Dot = XMVector3Dot(V1, V2);
+    L1 = _mm_mul_ps(L1, L2);
+    CosAngle = _mm_mul_ps(Dot, L1);
+    CosAngle = XMVectorClamp(CosAngle,g_XMNegativeOne,g_XMOne);
+    Result = XMVectorACos(CosAngle);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3LinePointDistance
+(
+    FXMVECTOR LinePoint1, 
+    FXMVECTOR LinePoint2, 
+    FXMVECTOR Point
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR PointVector;
+    XMVECTOR LineVector;
+    XMVECTOR ReciprocalLengthSq;
+    XMVECTOR PointProjectionScale;
+    XMVECTOR DistanceVector;
+    XMVECTOR Result;
+
+    // Given a vector PointVector from LinePoint1 to Point and a vector
+    // LineVector from LinePoint1 to LinePoint2, the scaled distance 
+    // PointProjectionScale from LinePoint1 to the perpendicular projection
+    // of PointVector onto the line is defined as:
+    //
+    //     PointProjectionScale = dot(PointVector, LineVector) / LengthSq(LineVector)
+
+    PointVector = XMVectorSubtract(Point, LinePoint1);
+    LineVector = XMVectorSubtract(LinePoint2, LinePoint1);
+
+    ReciprocalLengthSq = XMVector3LengthSq(LineVector);
+    ReciprocalLengthSq = XMVectorReciprocal(ReciprocalLengthSq);
+
+    PointProjectionScale = XMVector3Dot(PointVector, LineVector);
+    PointProjectionScale = XMVectorMultiply(PointProjectionScale, ReciprocalLengthSq);
+
+    DistanceVector = XMVectorMultiply(LineVector, PointProjectionScale);
+    DistanceVector = XMVectorSubtract(PointVector, DistanceVector);
+
+    Result = XMVector3Length(DistanceVector);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR PointVector = _mm_sub_ps(Point,LinePoint1);
+    XMVECTOR LineVector = _mm_sub_ps(LinePoint2,LinePoint1);
+    XMVECTOR ReciprocalLengthSq = XMVector3LengthSq(LineVector);
+    XMVECTOR vResult = XMVector3Dot(PointVector,LineVector);
+    vResult = _mm_div_ps(vResult,ReciprocalLengthSq);
+    vResult = _mm_mul_ps(vResult,LineVector);
+    vResult = _mm_sub_ps(PointVector,vResult);
+    vResult = XMVector3Length(vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE VOID XMVector3ComponentsFromNormal
+(
+    XMVECTOR* pParallel, 
+    XMVECTOR* pPerpendicular, 
+    FXMVECTOR  V, 
+    FXMVECTOR  Normal
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Parallel;
+    XMVECTOR Scale;
+
+    XMASSERT(pParallel);
+    XMASSERT(pPerpendicular);
+
+    Scale = XMVector3Dot(V, Normal);
+
+    Parallel = XMVectorMultiply(Normal, Scale);
+
+    *pParallel = Parallel;
+    *pPerpendicular = XMVectorSubtract(V, Parallel);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pParallel);
+    XMASSERT(pPerpendicular);
+    XMVECTOR Scale = XMVector3Dot(V, Normal);
+    XMVECTOR Parallel = _mm_mul_ps(Normal,Scale);
+    *pParallel = Parallel;
+    *pPerpendicular = _mm_sub_ps(V,Parallel);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Transform a vector using a rotation expressed as a unit quaternion
+
+XMFINLINE XMVECTOR XMVector3Rotate
+(
+    FXMVECTOR V, 
+    FXMVECTOR RotationQuaternion
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR A;
+    XMVECTOR Q;
+    XMVECTOR Result;
+
+    A = XMVectorSelect(g_XMSelect1110.v, V, g_XMSelect1110.v);
+    Q = XMQuaternionConjugate(RotationQuaternion);
+    Result = XMQuaternionMultiply(Q, A);
+    Result = XMQuaternionMultiply(Result, RotationQuaternion);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR A;
+    XMVECTOR Q;
+    XMVECTOR Result;
+
+    A = _mm_and_ps(V,g_XMMask3);
+    Q = XMQuaternionConjugate(RotationQuaternion);
+    Result = XMQuaternionMultiply(Q, A);
+    Result = XMQuaternionMultiply(Result, RotationQuaternion);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Transform a vector using the inverse of a rotation expressed as a unit quaternion
+
+XMFINLINE XMVECTOR XMVector3InverseRotate
+(
+    FXMVECTOR V, 
+    FXMVECTOR RotationQuaternion
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR A;
+    XMVECTOR Q;
+    XMVECTOR Result;
+
+    A = XMVectorSelect(g_XMSelect1110.v, V, g_XMSelect1110.v);
+    Result = XMQuaternionMultiply(RotationQuaternion, A);
+    Q = XMQuaternionConjugate(RotationQuaternion);
+    Result = XMQuaternionMultiply(Result, Q);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR A;
+    XMVECTOR Q;
+    XMVECTOR Result;
+    A = _mm_and_ps(V,g_XMMask3);
+    Result = XMQuaternionMultiply(RotationQuaternion, A);
+    Q = XMQuaternionConjugate(RotationQuaternion);
+    Result = XMQuaternionMultiply(Result, Q);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3Transform
+(
+    FXMVECTOR V, 
+    CXMMATRIX M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Z;
+    XMVECTOR Result;
+
+    Z = XMVectorSplatZ(V);
+    Y = XMVectorSplatY(V);
+    X = XMVectorSplatX(V);
+
+    Result = XMVectorMultiplyAdd(Z, M.r[2], M.r[3]);
+    Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
+    Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
+    vResult = _mm_mul_ps(vResult,M.r[0]);
+    XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
+    vTemp = _mm_mul_ps(vTemp,M.r[1]);
+    vResult = _mm_add_ps(vResult,vTemp);
+    vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
+    vTemp = _mm_mul_ps(vTemp,M.r[2]);
+    vResult = _mm_add_ps(vResult,vTemp);
+    vResult = _mm_add_ps(vResult,M.r[3]);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT4* XMVector3TransformStream
+(
+    XMFLOAT4*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT3* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    CXMMATRIX       M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V;
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Z;
+    XMVECTOR Result;
+    size_t   i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*    pOutputVector = (BYTE*)pOutputStream;
+
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat3((const XMFLOAT3*)pInputVector);
+        Z = XMVectorSplatZ(V);
+        Y = XMVectorSplatY(V);
+        X = XMVectorSplatX(V);
+
+        Result = XMVectorMultiplyAdd(Z, M.r[2], M.r[3]);
+        Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
+        Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+        XMStoreFloat4((XMFLOAT4*)pOutputVector, Result);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+    size_t   i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*    pOutputVector = (BYTE*)pOutputStream;
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->x);
+        XMVECTOR Y = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->y);
+        XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->z);
+        vResult = _mm_mul_ps(vResult,M.r[2]);
+        vResult = _mm_add_ps(vResult,M.r[3]);
+        Y = _mm_mul_ps(Y,M.r[1]);
+        vResult = _mm_add_ps(vResult,Y);
+        X = _mm_mul_ps(X,M.r[0]);
+        vResult = _mm_add_ps(vResult,X);
+        _mm_storeu_ps(reinterpret_cast<float *>(pOutputVector),vResult);
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT4* XMVector3TransformStreamNC
+(
+    XMFLOAT4*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT3* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    CXMMATRIX     M
+)
+{
+#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS) || defined(_XM_SSE_INTRINSICS_)
+    return XMVector3TransformStream( pOutputStream, OutputStride, pInputStream, InputStride, VectorCount, M );
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3TransformCoord
+(
+    FXMVECTOR V, 
+    CXMMATRIX M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Z;
+    XMVECTOR InverseW;
+    XMVECTOR Result;
+
+    Z = XMVectorSplatZ(V);
+    Y = XMVectorSplatY(V);
+    X = XMVectorSplatX(V);
+
+    Result = XMVectorMultiplyAdd(Z, M.r[2], M.r[3]);
+    Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
+    Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+    InverseW = XMVectorSplatW(Result);
+    InverseW = XMVectorReciprocal(InverseW);
+
+    Result = XMVectorMultiply(Result, InverseW);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
+    vResult = _mm_mul_ps(vResult,M.r[0]);
+    XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
+    vTemp = _mm_mul_ps(vTemp,M.r[1]);
+    vResult = _mm_add_ps(vResult,vTemp);
+    vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
+    vTemp = _mm_mul_ps(vTemp,M.r[2]);
+    vResult = _mm_add_ps(vResult,vTemp);
+    vResult = _mm_add_ps(vResult,M.r[3]);
+    vTemp = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,3,3,3));
+    vResult = _mm_div_ps(vResult,vTemp);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT3* XMVector3TransformCoordStream
+(
+    XMFLOAT3*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT3* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    CXMMATRIX       M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V;
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Z;
+    XMVECTOR InverseW;
+    XMVECTOR Result;
+    size_t   i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*    pOutputVector = (BYTE*)pOutputStream;
+
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat3((const XMFLOAT3*)pInputVector);
+        Z = XMVectorSplatZ(V);
+        Y = XMVectorSplatY(V);
+        X = XMVectorSplatX(V);
+//        Z = XMVectorReplicate(((XMFLOAT3*)pInputVector)->z);
+//        Y = XMVectorReplicate(((XMFLOAT3*)pInputVector)->y);
+//        X = XMVectorReplicate(((XMFLOAT3*)pInputVector)->x);
+
+        Result = XMVectorMultiplyAdd(Z, M.r[2], M.r[3]);
+        Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
+        Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+        InverseW = XMVectorSplatW(Result);
+        InverseW = XMVectorReciprocal(InverseW);
+
+        Result = XMVectorMultiply(Result, InverseW);
+
+        XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    size_t i;
+    CONST BYTE *pInputVector = (CONST BYTE*)pInputStream;
+    BYTE *pOutputVector = (BYTE*)pOutputStream;
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->x);
+        XMVECTOR Y = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->y);
+        XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->z);
+        vResult = _mm_mul_ps(vResult,M.r[2]);
+        vResult = _mm_add_ps(vResult,M.r[3]);
+        Y = _mm_mul_ps(Y,M.r[1]);
+        vResult = _mm_add_ps(vResult,Y);
+        X = _mm_mul_ps(X,M.r[0]);
+        vResult = _mm_add_ps(vResult,X);
+
+        X = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,3,3,3));
+        vResult = _mm_div_ps(vResult,X);
+        _mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->x,vResult);
+        vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,3,2,1));
+        _mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->y,vResult);
+        vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,3,2,1));
+        _mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->z,vResult);
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3TransformNormal
+(
+    FXMVECTOR V, 
+    CXMMATRIX M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Z;
+    XMVECTOR Result;
+
+    Z = XMVectorSplatZ(V);
+    Y = XMVectorSplatY(V);
+    X = XMVectorSplatX(V);
+
+    Result = XMVectorMultiply(Z, M.r[2]);
+    Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
+    Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
+    vResult = _mm_mul_ps(vResult,M.r[0]);
+    XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
+    vTemp = _mm_mul_ps(vTemp,M.r[1]);
+    vResult = _mm_add_ps(vResult,vTemp);
+    vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
+    vTemp = _mm_mul_ps(vTemp,M.r[2]);
+    vResult = _mm_add_ps(vResult,vTemp);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT3* XMVector3TransformNormalStream
+(
+    XMFLOAT3*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT3* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    CXMMATRIX       M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V;
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Z;
+    XMVECTOR Result;
+    size_t   i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*    pOutputVector = (BYTE*)pOutputStream;
+
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat3((const XMFLOAT3*)pInputVector);
+        Z = XMVectorSplatZ(V);
+        Y = XMVectorSplatY(V);
+        X = XMVectorSplatX(V);
+//        Z = XMVectorReplicate(((XMFLOAT3*)pInputVector)->z);
+//        Y = XMVectorReplicate(((XMFLOAT3*)pInputVector)->y);
+//        X = XMVectorReplicate(((XMFLOAT3*)pInputVector)->x);
+
+        Result = XMVectorMultiply(Z, M.r[2]);
+        Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
+        Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+        XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    size_t i;
+    CONST BYTE *pInputVector = (CONST BYTE*)pInputStream;
+    BYTE *pOutputVector = (BYTE*)pOutputStream;
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->x);
+        XMVECTOR Y = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->y);
+        XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->z);
+        vResult = _mm_mul_ps(vResult,M.r[2]);
+        Y = _mm_mul_ps(Y,M.r[1]);
+        vResult = _mm_add_ps(vResult,Y);
+        X = _mm_mul_ps(X,M.r[0]);
+        vResult = _mm_add_ps(vResult,X);
+        _mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->x,vResult);
+        vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,3,2,1));
+        _mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->y,vResult);
+        vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,3,2,1));
+        _mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->z,vResult);
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMVECTOR XMVector3Project
+(
+    FXMVECTOR V, 
+    FLOAT    ViewportX, 
+    FLOAT    ViewportY, 
+    FLOAT    ViewportWidth, 
+    FLOAT    ViewportHeight, 
+    FLOAT    ViewportMinZ, 
+    FLOAT    ViewportMaxZ, 
+    CXMMATRIX Projection, 
+    CXMMATRIX View, 
+    CXMMATRIX World
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMMATRIX Transform;
+    XMVECTOR Scale;
+    XMVECTOR Offset;
+    XMVECTOR Result;
+    FLOAT    HalfViewportWidth = ViewportWidth * 0.5f;
+    FLOAT    HalfViewportHeight = ViewportHeight * 0.5f;
+
+    Scale = XMVectorSet(HalfViewportWidth, 
+                        -HalfViewportHeight,
+                        ViewportMaxZ - ViewportMinZ,
+                        0.0f);
+
+    Offset = XMVectorSet(ViewportX + HalfViewportWidth,
+                        ViewportY + HalfViewportHeight,
+                        ViewportMinZ,
+                        0.0f);
+
+    Transform = XMMatrixMultiply(World, View);
+    Transform = XMMatrixMultiply(Transform, Projection);
+
+    Result = XMVector3TransformCoord(V, Transform);
+
+    Result = XMVectorMultiplyAdd(Result, Scale, Offset);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMMATRIX Transform;
+    XMVECTOR Scale;
+    XMVECTOR Offset;
+    XMVECTOR Result;
+    FLOAT    HalfViewportWidth = ViewportWidth * 0.5f;
+    FLOAT    HalfViewportHeight = ViewportHeight * 0.5f;
+
+    Scale = XMVectorSet(HalfViewportWidth, 
+                        -HalfViewportHeight,
+                        ViewportMaxZ - ViewportMinZ,
+                        0.0f);
+
+    Offset = XMVectorSet(ViewportX + HalfViewportWidth,
+                        ViewportY + HalfViewportHeight,
+                        ViewportMinZ,
+                        0.0f);
+    Transform = XMMatrixMultiply(World, View);
+    Transform = XMMatrixMultiply(Transform, Projection);
+    Result = XMVector3TransformCoord(V, Transform);
+    Result = _mm_mul_ps(Result,Scale);
+    Result = _mm_add_ps(Result,Offset);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT3* XMVector3ProjectStream
+(
+    XMFLOAT3*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT3* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    FLOAT           ViewportX, 
+    FLOAT           ViewportY, 
+    FLOAT           ViewportWidth, 
+    FLOAT           ViewportHeight, 
+    FLOAT           ViewportMinZ, 
+    FLOAT           ViewportMaxZ, 
+    CXMMATRIX       Projection, 
+    CXMMATRIX       View, 
+    CXMMATRIX       World
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMMATRIX Transform;
+    XMVECTOR V;
+    XMVECTOR Scale;
+    XMVECTOR Offset;
+    XMVECTOR Result;
+    size_t   i;
+    FLOAT    HalfViewportWidth = ViewportWidth * 0.5f;
+    FLOAT    HalfViewportHeight = ViewportHeight * 0.5f;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*    pOutputVector = (BYTE*)pOutputStream;
+
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    Scale = XMVectorSet(HalfViewportWidth, 
+                        -HalfViewportHeight,
+                        ViewportMaxZ - ViewportMinZ,
+                        1.0f);
+
+    Offset = XMVectorSet(ViewportX + HalfViewportWidth,
+                        ViewportY + HalfViewportHeight,
+                        ViewportMinZ,
+                        0.0f);
+
+    Transform = XMMatrixMultiply(World, View);
+    Transform = XMMatrixMultiply(Transform, Projection);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat3((const XMFLOAT3*)pInputVector);
+
+        Result = XMVector3TransformCoord(V, Transform);
+
+        Result = XMVectorMultiplyAdd(Result, Scale, Offset);
+
+        XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+    XMMATRIX Transform;
+    XMVECTOR V;
+    XMVECTOR Scale;
+    XMVECTOR Offset;
+    XMVECTOR Result;
+    size_t   i;
+    FLOAT    HalfViewportWidth = ViewportWidth * 0.5f;
+    FLOAT    HalfViewportHeight = ViewportHeight * 0.5f;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*    pOutputVector = (BYTE*)pOutputStream;
+
+    Scale = XMVectorSet(HalfViewportWidth, 
+                        -HalfViewportHeight,
+                        ViewportMaxZ - ViewportMinZ,
+                        1.0f);
+
+    Offset = XMVectorSet(ViewportX + HalfViewportWidth,
+                        ViewportY + HalfViewportHeight,
+                        ViewportMinZ,
+                        0.0f);
+
+    Transform = XMMatrixMultiply(World, View);
+    Transform = XMMatrixMultiply(Transform, Projection);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat3((const XMFLOAT3*)pInputVector);
+
+        Result = XMVector3TransformCoord(V, Transform);
+
+        Result = _mm_mul_ps(Result,Scale);
+        Result = _mm_add_ps(Result,Offset);
+        XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+    return pOutputStream;
+
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector3Unproject
+(
+    FXMVECTOR V, 
+    FLOAT    ViewportX, 
+    FLOAT    ViewportY, 
+    FLOAT    ViewportWidth, 
+    FLOAT    ViewportHeight, 
+    FLOAT    ViewportMinZ, 
+    FLOAT    ViewportMaxZ, 
+    CXMMATRIX Projection, 
+    CXMMATRIX View, 
+    CXMMATRIX World
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMMATRIX        Transform;
+    XMVECTOR        Scale;
+    XMVECTOR        Offset;
+    XMVECTOR        Determinant;
+    XMVECTOR        Result;
+    CONST XMVECTOR  D = XMVectorSet(-1.0f, 1.0f, 0.0f, 0.0f);
+
+    Scale = XMVectorSet(ViewportWidth * 0.5f,
+                        -ViewportHeight * 0.5f,
+                        ViewportMaxZ - ViewportMinZ,
+                        1.0f);
+    Scale = XMVectorReciprocal(Scale);
+
+    Offset = XMVectorSet(-ViewportX,
+                        -ViewportY,
+                        -ViewportMinZ,
+                        0.0f);
+    Offset = XMVectorMultiplyAdd(Scale, Offset, D);
+
+    Transform = XMMatrixMultiply(World, View);
+    Transform = XMMatrixMultiply(Transform, Projection);
+    Transform = XMMatrixInverse(&Determinant, Transform);
+
+    Result = XMVectorMultiplyAdd(V, Scale, Offset);
+
+    Result = XMVector3TransformCoord(Result, Transform);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMMATRIX        Transform;
+    XMVECTOR        Scale;
+    XMVECTOR        Offset;
+    XMVECTOR        Determinant;
+    XMVECTOR        Result;
+    CONST XMVECTORF32  D = {-1.0f, 1.0f, 0.0f, 0.0f};
+
+    Scale = XMVectorSet(ViewportWidth * 0.5f,
+                        -ViewportHeight * 0.5f,
+                        ViewportMaxZ - ViewportMinZ,
+                        1.0f);
+    Scale = XMVectorReciprocal(Scale);
+
+    Offset = XMVectorSet(-ViewportX,
+                        -ViewportY,
+                        -ViewportMinZ,
+                        0.0f);
+    Offset = _mm_mul_ps(Offset,Scale);
+    Offset = _mm_add_ps(Offset,D);
+
+    Transform = XMMatrixMultiply(World, View);
+    Transform = XMMatrixMultiply(Transform, Projection);
+    Transform = XMMatrixInverse(&Determinant, Transform);
+
+    Result = _mm_mul_ps(V,Scale);
+    Result = _mm_add_ps(Result,Offset);
+
+    Result = XMVector3TransformCoord(Result, Transform);
+
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT3* XMVector3UnprojectStream
+(
+    XMFLOAT3*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT3* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    FLOAT           ViewportX, 
+    FLOAT           ViewportY, 
+    FLOAT           ViewportWidth, 
+    FLOAT           ViewportHeight, 
+    FLOAT           ViewportMinZ, 
+    FLOAT           ViewportMaxZ, 
+    CXMMATRIX       Projection, 
+    CXMMATRIX       View, 
+    CXMMATRIX       World)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMMATRIX        Transform;
+    XMVECTOR        Scale;
+    XMVECTOR        Offset;
+    XMVECTOR        V;
+    XMVECTOR        Determinant;
+    XMVECTOR        Result;
+    size_t          i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*           pOutputVector = (BYTE*)pOutputStream;
+    CONST XMVECTOR  D = XMVectorSet(-1.0f, 1.0f, 0.0f, 0.0f);
+
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    Scale = XMVectorSet(ViewportWidth * 0.5f,
+                        -ViewportHeight * 0.5f,
+                        ViewportMaxZ - ViewportMinZ,
+                        1.0f);
+    Scale = XMVectorReciprocal(Scale);
+
+    Offset = XMVectorSet(-ViewportX,
+                        -ViewportY,
+                        -ViewportMinZ,
+                        0.0f);
+    Offset = XMVectorMultiplyAdd(Scale, Offset, D);
+
+    Transform = XMMatrixMultiply(World, View);
+    Transform = XMMatrixMultiply(Transform, Projection);
+    Transform = XMMatrixInverse(&Determinant, Transform);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat3((const XMFLOAT3*)pInputVector);
+
+        Result = XMVectorMultiplyAdd(V, Scale, Offset);
+
+        Result = XMVector3TransformCoord(Result, Transform);
+
+        XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+    XMMATRIX        Transform;
+    XMVECTOR        Scale;
+    XMVECTOR        Offset;
+    XMVECTOR        V;
+    XMVECTOR        Determinant;
+    XMVECTOR        Result;
+    size_t          i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*           pOutputVector = (BYTE*)pOutputStream;
+    CONST XMVECTORF32  D = {-1.0f, 1.0f, 0.0f, 0.0f};
+
+    Scale = XMVectorSet(ViewportWidth * 0.5f,
+                        -ViewportHeight * 0.5f,
+                        ViewportMaxZ - ViewportMinZ,
+                        1.0f);
+    Scale = XMVectorReciprocal(Scale);
+
+    Offset = XMVectorSet(-ViewportX,
+                        -ViewportY,
+                        -ViewportMinZ,
+                        0.0f);
+    Offset = _mm_mul_ps(Offset,Scale);
+    Offset = _mm_add_ps(Offset,D);
+
+    Transform = XMMatrixMultiply(World, View);
+    Transform = XMMatrixMultiply(Transform, Projection);
+    Transform = XMMatrixInverse(&Determinant, Transform);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat3((const XMFLOAT3*)pInputVector);
+
+        Result = XMVectorMultiplyAdd(V, Scale, Offset);
+
+        Result = XMVector3TransformCoord(Result, Transform);
+
+        XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+/****************************************************************************
+ *
+ * 4D Vector
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+// Comparison operations
+//------------------------------------------------------------------------------
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4Equal
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] == V2.vector4_f32[0]) && (V1.vector4_f32[1] == V2.vector4_f32[1]) && (V1.vector4_f32[2] == V2.vector4_f32[2]) && (V1.vector4_f32[3] == V2.vector4_f32[3])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
+    return ((_mm_movemask_ps(vTemp)==0x0f) != 0);
+#else
+    return XMComparisonAllTrue(XMVector4EqualR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector4EqualR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    UINT CR = 0;
+
+    if ((V1.vector4_f32[0] == V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] == V2.vector4_f32[1]) &&
+        (V1.vector4_f32[2] == V2.vector4_f32[2]) &&
+        (V1.vector4_f32[3] == V2.vector4_f32[3]))
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if ((V1.vector4_f32[0] != V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] != V2.vector4_f32[1]) &&
+        (V1.vector4_f32[2] != V2.vector4_f32[2]) &&
+        (V1.vector4_f32[3] != V2.vector4_f32[3]))
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
+    int iTest = _mm_movemask_ps(vTemp);
+    UINT CR = 0;
+    if (iTest==0xf)     // All equal?
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (iTest==0)  // All not equal?
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4EqualInt
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_u32[0] == V2.vector4_u32[0]) && (V1.vector4_u32[1] == V2.vector4_u32[1]) && (V1.vector4_u32[2] == V2.vector4_u32[2]) && (V1.vector4_u32[3] == V2.vector4_u32[3])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
+    return ((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])==0xf) != 0);
+#else
+    return XMComparisonAllTrue(XMVector4EqualIntR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector4EqualIntR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT CR = 0;
+    if (V1.vector4_u32[0] == V2.vector4_u32[0] && 
+        V1.vector4_u32[1] == V2.vector4_u32[1] &&
+        V1.vector4_u32[2] == V2.vector4_u32[2] &&
+        V1.vector4_u32[3] == V2.vector4_u32[3])
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (V1.vector4_u32[0] != V2.vector4_u32[0] && 
+        V1.vector4_u32[1] != V2.vector4_u32[1] &&
+        V1.vector4_u32[2] != V2.vector4_u32[2] &&
+        V1.vector4_u32[3] != V2.vector4_u32[3])
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
+    int iTest = _mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0]);
+    UINT CR = 0;
+    if (iTest==0xf)     // All equal?
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (iTest==0)  // All not equal?
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+XMFINLINE BOOL XMVector4NearEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2, 
+    FXMVECTOR Epsilon
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    FLOAT dx, dy, dz, dw;
+
+    dx = fabsf(V1.vector4_f32[0]-V2.vector4_f32[0]);
+    dy = fabsf(V1.vector4_f32[1]-V2.vector4_f32[1]);
+    dz = fabsf(V1.vector4_f32[2]-V2.vector4_f32[2]);
+    dw = fabsf(V1.vector4_f32[3]-V2.vector4_f32[3]);
+    return (((dx <= Epsilon.vector4_f32[0]) &&
+            (dy <= Epsilon.vector4_f32[1]) &&
+            (dz <= Epsilon.vector4_f32[2]) &&
+            (dw <= Epsilon.vector4_f32[3])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Get the difference
+    XMVECTOR vDelta = _mm_sub_ps(V1,V2);
+    // Get the absolute value of the difference
+    XMVECTOR vTemp = _mm_setzero_ps();
+    vTemp = _mm_sub_ps(vTemp,vDelta);
+    vTemp = _mm_max_ps(vTemp,vDelta);
+    vTemp = _mm_cmple_ps(vTemp,Epsilon);
+    return ((_mm_movemask_ps(vTemp)==0xf) != 0);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4NotEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] != V2.vector4_f32[0]) || (V1.vector4_f32[1] != V2.vector4_f32[1]) || (V1.vector4_f32[2] != V2.vector4_f32[2]) || (V1.vector4_f32[3] != V2.vector4_f32[3])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpneq_ps(V1,V2);
+    return ((_mm_movemask_ps(vTemp)) != 0);
+#else
+    return XMComparisonAnyFalse(XMVector4EqualR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4NotEqualInt
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_u32[0] != V2.vector4_u32[0]) || (V1.vector4_u32[1] != V2.vector4_u32[1]) || (V1.vector4_u32[2] != V2.vector4_u32[2]) || (V1.vector4_u32[3] != V2.vector4_u32[3])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    __m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
+    return ((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])!=0xF) != 0);
+#else
+    return XMComparisonAnyFalse(XMVector4EqualIntR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4Greater
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] > V2.vector4_f32[0]) && (V1.vector4_f32[1] > V2.vector4_f32[1]) && (V1.vector4_f32[2] > V2.vector4_f32[2]) && (V1.vector4_f32[3] > V2.vector4_f32[3])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
+    return ((_mm_movemask_ps(vTemp)==0x0f) != 0);
+#else
+    return XMComparisonAllTrue(XMVector4GreaterR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector4GreaterR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT CR = 0;
+    if (V1.vector4_f32[0] > V2.vector4_f32[0] && 
+        V1.vector4_f32[1] > V2.vector4_f32[1] &&
+        V1.vector4_f32[2] > V2.vector4_f32[2] &&
+        V1.vector4_f32[3] > V2.vector4_f32[3])
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (V1.vector4_f32[0] <= V2.vector4_f32[0] && 
+        V1.vector4_f32[1] <= V2.vector4_f32[1] &&
+        V1.vector4_f32[2] <= V2.vector4_f32[2] &&
+        V1.vector4_f32[3] <= V2.vector4_f32[3])
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    UINT CR = 0;
+    XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
+    int iTest = _mm_movemask_ps(vTemp);
+    if (iTest==0xf) {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4GreaterOrEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] >= V2.vector4_f32[0]) && (V1.vector4_f32[1] >= V2.vector4_f32[1]) && (V1.vector4_f32[2] >= V2.vector4_f32[2]) && (V1.vector4_f32[3] >= V2.vector4_f32[3])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
+    return ((_mm_movemask_ps(vTemp)==0x0f) != 0);
+#else
+    return XMComparisonAllTrue(XMVector4GreaterOrEqualR(V1, V2));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector4GreaterOrEqualR
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    UINT CR = 0;
+    if ((V1.vector4_f32[0] >= V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] >= V2.vector4_f32[1]) &&
+        (V1.vector4_f32[2] >= V2.vector4_f32[2]) &&
+        (V1.vector4_f32[3] >= V2.vector4_f32[3]))
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if ((V1.vector4_f32[0] < V2.vector4_f32[0]) && 
+        (V1.vector4_f32[1] < V2.vector4_f32[1]) &&
+        (V1.vector4_f32[2] < V2.vector4_f32[2]) &&
+        (V1.vector4_f32[3] < V2.vector4_f32[3]))
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    UINT CR = 0;
+    XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
+    int iTest = _mm_movemask_ps(vTemp);
+    if (iTest==0x0f)
+    {
+        CR = XM_CRMASK_CR6TRUE;
+    }
+    else if (!iTest)
+    {
+        CR = XM_CRMASK_CR6FALSE;
+    }
+    return CR;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4Less
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] < V2.vector4_f32[0]) && (V1.vector4_f32[1] < V2.vector4_f32[1]) && (V1.vector4_f32[2] < V2.vector4_f32[2]) && (V1.vector4_f32[3] < V2.vector4_f32[3])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmplt_ps(V1,V2);
+    return ((_mm_movemask_ps(vTemp)==0x0f) != 0);
+#else
+    return XMComparisonAllTrue(XMVector4GreaterR(V2, V1));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4LessOrEqual
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V1.vector4_f32[0] <= V2.vector4_f32[0]) && (V1.vector4_f32[1] <= V2.vector4_f32[1]) && (V1.vector4_f32[2] <= V2.vector4_f32[2]) && (V1.vector4_f32[3] <= V2.vector4_f32[3])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp = _mm_cmple_ps(V1,V2);
+    return ((_mm_movemask_ps(vTemp)==0x0f) != 0);
+#else
+    return XMComparisonAllTrue(XMVector4GreaterOrEqualR(V2, V1));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4InBounds
+(
+    FXMVECTOR V, 
+    FXMVECTOR Bounds
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) && 
+        (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) &&
+        (V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) &&
+        (V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3])) != 0);
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Test if less than or equal
+    XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
+    // Negate the bounds
+    XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
+    // Test if greater or equal (Reversed)
+    vTemp2 = _mm_cmple_ps(vTemp2,V);
+    // Blend answers
+    vTemp1 = _mm_and_ps(vTemp1,vTemp2);
+    // All in bounds?
+    return ((_mm_movemask_ps(vTemp1)==0x0f) != 0);
+#else
+    return XMComparisonAllInBounds(XMVector4InBoundsR(V, Bounds));
+#endif
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE UINT XMVector4InBoundsR
+(
+    FXMVECTOR V, 
+    FXMVECTOR Bounds
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    UINT CR = 0;
+    if ((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) && 
+        (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) &&
+        (V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) &&
+        (V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3]))
+    {
+        CR = XM_CRMASK_CR6BOUNDS;
+    }
+    return CR;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Test if less than or equal
+    XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
+    // Negate the bounds
+    XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
+    // Test if greater or equal (Reversed)
+    vTemp2 = _mm_cmple_ps(vTemp2,V);
+    // Blend answers
+    vTemp1 = _mm_and_ps(vTemp1,vTemp2);
+    // All in bounds?
+    return (_mm_movemask_ps(vTemp1)==0x0f) ? XM_CRMASK_CR6BOUNDS : 0;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4IsNaN
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    return (XMISNAN(V.vector4_f32[0]) ||
+            XMISNAN(V.vector4_f32[1]) ||
+            XMISNAN(V.vector4_f32[2]) ||
+            XMISNAN(V.vector4_f32[3]));
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Test against itself. NaN is always not equal
+    XMVECTOR vTempNan = _mm_cmpneq_ps(V,V);
+    // If any are NaN, the mask is non-zero
+    return (_mm_movemask_ps(vTempNan)!=0);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE BOOL XMVector4IsInfinite
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    return (XMISINF(V.vector4_f32[0]) ||
+            XMISINF(V.vector4_f32[1]) ||
+            XMISINF(V.vector4_f32[2]) ||
+            XMISINF(V.vector4_f32[3]));
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Mask off the sign bit
+    XMVECTOR vTemp = _mm_and_ps(V,g_XMAbsMask);
+    // Compare to infinity
+    vTemp = _mm_cmpeq_ps(vTemp,g_XMInfinity);
+    // If any are infinity, the signs are true.
+    return (_mm_movemask_ps(vTemp) != 0);
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// Computation operations
+//------------------------------------------------------------------------------
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4Dot
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result.vector4_f32[0] =
+    Result.vector4_f32[1] =
+    Result.vector4_f32[2] =
+    Result.vector4_f32[3] = V1.vector4_f32[0] * V2.vector4_f32[0] + V1.vector4_f32[1] * V2.vector4_f32[1] + V1.vector4_f32[2] * V2.vector4_f32[2] + V1.vector4_f32[3] * V2.vector4_f32[3];
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vTemp2 = V2;
+    XMVECTOR vTemp = _mm_mul_ps(V1,vTemp2);
+    vTemp2 = _mm_shuffle_ps(vTemp2,vTemp,_MM_SHUFFLE(1,0,0,0)); // Copy X to the Z position and Y to the W position
+    vTemp2 = _mm_add_ps(vTemp2,vTemp);          // Add Z = X+Z; W = Y+W;
+    vTemp = _mm_shuffle_ps(vTemp,vTemp2,_MM_SHUFFLE(0,3,0,0));  // Copy W to the Z position
+    vTemp = _mm_add_ps(vTemp,vTemp2);           // Add Z and W together
+    return _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(2,2,2,2));    // Splat Z and return
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4Cross
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2, 
+    FXMVECTOR V3
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    XMVECTOR Result;   
+
+    Result.vector4_f32[0] = (((V2.vector4_f32[2]*V3.vector4_f32[3])-(V2.vector4_f32[3]*V3.vector4_f32[2]))*V1.vector4_f32[1])-(((V2.vector4_f32[1]*V3.vector4_f32[3])-(V2.vector4_f32[3]*V3.vector4_f32[1]))*V1.vector4_f32[2])+(((V2.vector4_f32[1]*V3.vector4_f32[2])-(V2.vector4_f32[2]*V3.vector4_f32[1]))*V1.vector4_f32[3]);
+    Result.vector4_f32[1] = (((V2.vector4_f32[3]*V3.vector4_f32[2])-(V2.vector4_f32[2]*V3.vector4_f32[3]))*V1.vector4_f32[0])-(((V2.vector4_f32[3]*V3.vector4_f32[0])-(V2.vector4_f32[0]*V3.vector4_f32[3]))*V1.vector4_f32[2])+(((V2.vector4_f32[2]*V3.vector4_f32[0])-(V2.vector4_f32[0]*V3.vector4_f32[2]))*V1.vector4_f32[3]);
+    Result.vector4_f32[2] = (((V2.vector4_f32[1]*V3.vector4_f32[3])-(V2.vector4_f32[3]*V3.vector4_f32[1]))*V1.vector4_f32[0])-(((V2.vector4_f32[0]*V3.vector4_f32[3])-(V2.vector4_f32[3]*V3.vector4_f32[0]))*V1.vector4_f32[1])+(((V2.vector4_f32[0]*V3.vector4_f32[1])-(V2.vector4_f32[1]*V3.vector4_f32[0]))*V1.vector4_f32[3]);
+    Result.vector4_f32[3] = (((V2.vector4_f32[2]*V3.vector4_f32[1])-(V2.vector4_f32[1]*V3.vector4_f32[2]))*V1.vector4_f32[0])-(((V2.vector4_f32[2]*V3.vector4_f32[0])-(V2.vector4_f32[0]*V3.vector4_f32[2]))*V1.vector4_f32[1])+(((V2.vector4_f32[1]*V3.vector4_f32[0])-(V2.vector4_f32[0]*V3.vector4_f32[1]))*V1.vector4_f32[2]);
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // V2zwyz * V3wzwy
+    XMVECTOR vResult = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(2,1,3,2));
+    XMVECTOR vTemp3 = _mm_shuffle_ps(V3,V3,_MM_SHUFFLE(1,3,2,3));
+    vResult = _mm_mul_ps(vResult,vTemp3);
+    // - V2wzwy * V3zwyz
+    XMVECTOR vTemp2 = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(1,3,2,3));
+    vTemp3 = _mm_shuffle_ps(vTemp3,vTemp3,_MM_SHUFFLE(1,3,0,1));
+    vTemp2 = _mm_mul_ps(vTemp2,vTemp3);
+    vResult = _mm_sub_ps(vResult,vTemp2);
+    // term1 * V1yxxx
+    XMVECTOR vTemp1 = _mm_shuffle_ps(V1,V1,_MM_SHUFFLE(0,0,0,1));
+    vResult = _mm_mul_ps(vResult,vTemp1);
+
+    // V2ywxz * V3wxwx
+    vTemp2 = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(2,0,3,1));
+    vTemp3 = _mm_shuffle_ps(V3,V3,_MM_SHUFFLE(0,3,0,3));
+    vTemp3 = _mm_mul_ps(vTemp3,vTemp2);
+    // - V2wxwx * V3ywxz
+    vTemp2 = _mm_shuffle_ps(vTemp2,vTemp2,_MM_SHUFFLE(2,1,2,1));
+    vTemp1 = _mm_shuffle_ps(V3,V3,_MM_SHUFFLE(2,0,3,1));
+    vTemp2 = _mm_mul_ps(vTemp2,vTemp1);
+    vTemp3 = _mm_sub_ps(vTemp3,vTemp2);
+    // vResult - temp * V1zzyy
+    vTemp1 = _mm_shuffle_ps(V1,V1,_MM_SHUFFLE(1,1,2,2));
+    vTemp1 = _mm_mul_ps(vTemp1,vTemp3);
+    vResult = _mm_sub_ps(vResult,vTemp1);
+
+    // V2yzxy * V3zxyx
+    vTemp2 = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(1,0,2,1));
+    vTemp3 = _mm_shuffle_ps(V3,V3,_MM_SHUFFLE(0,1,0,2));
+    vTemp3 = _mm_mul_ps(vTemp3,vTemp2);
+    // - V2zxyx * V3yzxy
+    vTemp2 = _mm_shuffle_ps(vTemp2,vTemp2,_MM_SHUFFLE(2,0,2,1));
+    vTemp1 = _mm_shuffle_ps(V3,V3,_MM_SHUFFLE(1,0,2,1));
+    vTemp1 = _mm_mul_ps(vTemp1,vTemp2);
+    vTemp3 = _mm_sub_ps(vTemp3,vTemp1);
+    // vResult + term * V1wwwz
+    vTemp1 = _mm_shuffle_ps(V1,V1,_MM_SHUFFLE(2,3,3,3));
+    vTemp3 = _mm_mul_ps(vTemp3,vTemp1);
+    vResult = _mm_add_ps(vResult,vTemp3);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4LengthSq
+(
+    FXMVECTOR V
+)
+{
+    return XMVector4Dot(V, V);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4ReciprocalLengthEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result = XMVector4LengthSq(V);
+    Result = XMVectorReciprocalSqrtEst(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x,y,z and w
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has z and w
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
+    // x+z, y+w
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // x+z,x+z,x+z,y+w
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
+    // ??,??,y+w,y+w
+    vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
+    // ??,??,x+z+y+w,??
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // Splat the length
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
+    // Get the reciprocal
+    vLengthSq = _mm_rsqrt_ps(vLengthSq);
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4ReciprocalLength
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result = XMVector4LengthSq(V);
+    Result = XMVectorReciprocalSqrt(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x,y,z and w
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has z and w
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
+    // x+z, y+w
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // x+z,x+z,x+z,y+w
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
+    // ??,??,y+w,y+w
+    vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
+    // ??,??,x+z+y+w,??
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // Splat the length
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
+    // Get the reciprocal
+    vLengthSq = _mm_sqrt_ps(vLengthSq);
+    // Accurate!
+    vLengthSq = _mm_div_ps(g_XMOne,vLengthSq);
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4LengthEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+
+    Result = XMVector4LengthSq(V);
+    Result = XMVectorSqrtEst(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x,y,z and w
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has z and w
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
+    // x+z, y+w
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // x+z,x+z,x+z,y+w
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
+    // ??,??,y+w,y+w
+    vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
+    // ??,??,x+z+y+w,??
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // Splat the length
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
+    // Prepare for the division
+    vLengthSq = _mm_sqrt_ps(vLengthSq);
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4Length
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_) 
+
+    XMVECTOR Result;
+
+    Result = XMVector4LengthSq(V);
+    Result = XMVectorSqrt(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x,y,z and w
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has z and w
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
+    // x+z, y+w
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // x+z,x+z,x+z,y+w
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
+    // ??,??,y+w,y+w
+    vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
+    // ??,??,x+z+y+w,??
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // Splat the length
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
+    // Prepare for the division
+    vLengthSq = _mm_sqrt_ps(vLengthSq);
+    return vLengthSq;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+// XMVector4NormalizeEst uses a reciprocal estimate and
+// returns QNaN on zero and infinite vectors.
+
+XMFINLINE XMVECTOR XMVector4NormalizeEst
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+    Result = XMVector4ReciprocalLength(V);
+    Result = XMVectorMultiply(V, Result);
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x,y,z and w
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has z and w
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
+    // x+z, y+w
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // x+z,x+z,x+z,y+w
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
+    // ??,??,y+w,y+w
+    vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
+    // ??,??,x+z+y+w,??
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // Splat the length
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
+    // Get the reciprocal
+    XMVECTOR vResult = _mm_rsqrt_ps(vLengthSq);
+    // Reciprocal mul to perform the normalization
+    vResult = _mm_mul_ps(vResult,V);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4Normalize
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    FLOAT fLength;
+    XMVECTOR vResult;
+
+    vResult = XMVector4Length( V );
+    fLength = vResult.vector4_f32[0];
+
+    // Prevent divide by zero
+    if (fLength > 0) {
+        fLength = 1.0f/fLength;
+    }
+    
+    vResult.vector4_f32[0] = V.vector4_f32[0]*fLength;
+    vResult.vector4_f32[1] = V.vector4_f32[1]*fLength;
+    vResult.vector4_f32[2] = V.vector4_f32[2]*fLength;
+    vResult.vector4_f32[3] = V.vector4_f32[3]*fLength;
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Perform the dot product on x,y,z and w
+    XMVECTOR vLengthSq = _mm_mul_ps(V,V);
+    // vTemp has z and w
+    XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
+    // x+z, y+w
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // x+z,x+z,x+z,y+w
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
+    // ??,??,y+w,y+w
+    vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
+    // ??,??,x+z+y+w,??
+    vLengthSq = _mm_add_ps(vLengthSq,vTemp);
+    // Splat the length
+    vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
+    // Prepare for the division
+    XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
+    // Create zero with a single instruction
+    XMVECTOR vZeroMask = _mm_setzero_ps();
+    // Test for a divide by zero (Must be FP to detect -0.0)
+    vZeroMask = _mm_cmpneq_ps(vZeroMask,vResult);
+    // Failsafe on zero (Or epsilon) length planes
+    // If the length is infinity, set the elements to zero
+    vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
+    // Divide to perform the normalization
+    vResult = _mm_div_ps(V,vResult);
+    // Any that are infinity, set to zero
+    vResult = _mm_and_ps(vResult,vZeroMask);
+    // Select qnan or result based on infinite length
+    XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq,g_XMQNaN);
+    XMVECTOR vTemp2 = _mm_and_ps(vResult,vLengthSq);
+    vResult = _mm_or_ps(vTemp1,vTemp2);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4ClampLength
+(
+    FXMVECTOR V, 
+    FLOAT    LengthMin, 
+    FLOAT    LengthMax
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR ClampMax;
+    XMVECTOR ClampMin;
+
+    ClampMax = XMVectorReplicate(LengthMax);
+    ClampMin = XMVectorReplicate(LengthMin);
+
+    return XMVector4ClampLengthV(V, ClampMin, ClampMax);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR ClampMax = _mm_set_ps1(LengthMax);
+    XMVECTOR ClampMin = _mm_set_ps1(LengthMin);
+    return XMVector4ClampLengthV(V, ClampMin, ClampMax);
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4ClampLengthV
+(
+    FXMVECTOR V, 
+    FXMVECTOR LengthMin, 
+    FXMVECTOR LengthMax
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR ClampLength;
+    XMVECTOR LengthSq;
+    XMVECTOR RcpLength;
+    XMVECTOR Length;
+    XMVECTOR Normal;
+    XMVECTOR Zero;
+    XMVECTOR InfiniteLength;
+    XMVECTOR ZeroLength;
+    XMVECTOR Select;
+    XMVECTOR ControlMax;
+    XMVECTOR ControlMin;
+    XMVECTOR Control;
+    XMVECTOR Result;
+
+    XMASSERT((LengthMin.vector4_f32[1] == LengthMin.vector4_f32[0]) && (LengthMin.vector4_f32[2] == LengthMin.vector4_f32[0]) && (LengthMin.vector4_f32[3] == LengthMin.vector4_f32[0]));
+    XMASSERT((LengthMax.vector4_f32[1] == LengthMax.vector4_f32[0]) && (LengthMax.vector4_f32[2] == LengthMax.vector4_f32[0]) && (LengthMax.vector4_f32[3] == LengthMax.vector4_f32[0]));
+    XMASSERT(XMVector4GreaterOrEqual(LengthMin, XMVectorZero()));
+    XMASSERT(XMVector4GreaterOrEqual(LengthMax, XMVectorZero()));
+    XMASSERT(XMVector4GreaterOrEqual(LengthMax, LengthMin));
+
+    LengthSq = XMVector4LengthSq(V);
+
+    Zero = XMVectorZero();
+
+    RcpLength = XMVectorReciprocalSqrt(LengthSq);
+
+    InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity.v);
+    ZeroLength = XMVectorEqual(LengthSq, Zero);
+
+    Normal = XMVectorMultiply(V, RcpLength);
+
+    Length = XMVectorMultiply(LengthSq, RcpLength);
+
+    Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
+    Length = XMVectorSelect(LengthSq, Length, Select);
+    Normal = XMVectorSelect(LengthSq, Normal, Select);
+
+    ControlMax = XMVectorGreater(Length, LengthMax);
+    ControlMin = XMVectorLess(Length, LengthMin);
+
+    ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
+    ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
+
+    Result = XMVectorMultiply(Normal, ClampLength);
+
+    // Preserve the original vector (with no precision loss) if the length falls within the given range
+    Control = XMVectorEqualInt(ControlMax, ControlMin);
+    Result = XMVectorSelect(Result, V, Control);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR ClampLength;
+    XMVECTOR LengthSq;
+    XMVECTOR RcpLength;
+    XMVECTOR Length;
+    XMVECTOR Normal;
+    XMVECTOR Zero;
+    XMVECTOR InfiniteLength;
+    XMVECTOR ZeroLength;
+    XMVECTOR Select;
+    XMVECTOR ControlMax;
+    XMVECTOR ControlMin;
+    XMVECTOR Control;
+    XMVECTOR Result;
+
+    XMASSERT((XMVectorGetY(LengthMin) == XMVectorGetX(LengthMin)) && (XMVectorGetZ(LengthMin) == XMVectorGetX(LengthMin)) && (XMVectorGetW(LengthMin) == XMVectorGetX(LengthMin)));
+    XMASSERT((XMVectorGetY(LengthMax) == XMVectorGetX(LengthMax)) && (XMVectorGetZ(LengthMax) == XMVectorGetX(LengthMax)) && (XMVectorGetW(LengthMax) == XMVectorGetX(LengthMax)));
+    XMASSERT(XMVector4GreaterOrEqual(LengthMin, g_XMZero));
+    XMASSERT(XMVector4GreaterOrEqual(LengthMax, g_XMZero));
+    XMASSERT(XMVector4GreaterOrEqual(LengthMax, LengthMin));
+
+    LengthSq = XMVector4LengthSq(V);
+    Zero = XMVectorZero();
+    RcpLength = XMVectorReciprocalSqrt(LengthSq);
+    InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity);
+    ZeroLength = XMVectorEqual(LengthSq, Zero);
+    Normal = _mm_mul_ps(V, RcpLength);
+    Length = _mm_mul_ps(LengthSq, RcpLength);
+    Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
+    Length = XMVectorSelect(LengthSq, Length, Select);
+    Normal = XMVectorSelect(LengthSq, Normal, Select);
+    ControlMax = XMVectorGreater(Length, LengthMax);
+    ControlMin = XMVectorLess(Length, LengthMin);
+    ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
+    ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
+    Result = _mm_mul_ps(Normal, ClampLength);
+    // Preserve the original vector (with no precision loss) if the length falls within the given range
+    Control = XMVectorEqualInt(ControlMax,ControlMin);
+    Result = XMVectorSelect(Result,V,Control);
+    return Result;
+
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4Reflect
+(
+    FXMVECTOR Incident, 
+    FXMVECTOR Normal
+)
+{
+#if defined(_XM_NO_INTRINSICS_) 
+
+    XMVECTOR Result;
+
+    // Result = Incident - (2 * dot(Incident, Normal)) * Normal
+    Result = XMVector4Dot(Incident, Normal);
+    Result = XMVectorAdd(Result, Result);
+    Result = XMVectorNegativeMultiplySubtract(Result, Normal, Incident);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Result = Incident - (2 * dot(Incident, Normal)) * Normal
+    XMVECTOR Result = XMVector4Dot(Incident,Normal);
+    Result = _mm_add_ps(Result,Result);
+    Result = _mm_mul_ps(Result,Normal);
+    Result = _mm_sub_ps(Incident,Result);
+    return Result;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4Refract
+(
+    FXMVECTOR Incident, 
+    FXMVECTOR Normal, 
+    FLOAT    RefractionIndex
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Index;
+    Index = XMVectorReplicate(RefractionIndex);
+    return XMVector4RefractV(Incident, Normal, Index);
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR Index = _mm_set_ps1(RefractionIndex);
+    return XMVector4RefractV(Incident,Normal,Index);
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4RefractV
+(
+    FXMVECTOR Incident, 
+    FXMVECTOR Normal, 
+    FXMVECTOR RefractionIndex
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR        IDotN;
+    XMVECTOR        R;
+    CONST XMVECTOR  Zero = XMVectorZero();
+
+    // Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) + 
+    // sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
+
+    IDotN = XMVector4Dot(Incident, Normal);
+
+    // R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
+    R = XMVectorNegativeMultiplySubtract(IDotN, IDotN, g_XMOne.v);
+    R = XMVectorMultiply(R, RefractionIndex);
+    R = XMVectorNegativeMultiplySubtract(R, RefractionIndex, g_XMOne.v);
+
+    if (XMVector4LessOrEqual(R, Zero))
+    {
+        // Total internal reflection
+        return Zero;
+    }
+    else
+    {
+        XMVECTOR Result;
+
+        // R = RefractionIndex * IDotN + sqrt(R)
+        R = XMVectorSqrt(R);
+        R = XMVectorMultiplyAdd(RefractionIndex, IDotN, R);
+
+        // Result = RefractionIndex * Incident - Normal * R
+        Result = XMVectorMultiply(RefractionIndex, Incident);
+        Result = XMVectorNegativeMultiplySubtract(Normal, R, Result);
+
+        return Result;
+    }
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) + 
+    // sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
+
+    XMVECTOR IDotN = XMVector4Dot(Incident,Normal);
+
+    // R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
+    XMVECTOR R = _mm_mul_ps(IDotN,IDotN);
+    R = _mm_sub_ps(g_XMOne,R);
+    R = _mm_mul_ps(R, RefractionIndex);
+    R = _mm_mul_ps(R, RefractionIndex);
+    R = _mm_sub_ps(g_XMOne,R);
+
+    XMVECTOR vResult = _mm_cmple_ps(R,g_XMZero);
+    if (_mm_movemask_ps(vResult)==0x0f)
+    {
+        // Total internal reflection
+        vResult = g_XMZero;
+    }
+    else
+    {
+        // R = RefractionIndex * IDotN + sqrt(R)
+        R = _mm_sqrt_ps(R);
+        vResult = _mm_mul_ps(RefractionIndex, IDotN);
+        R = _mm_add_ps(R,vResult);
+        // Result = RefractionIndex * Incident - Normal * R
+        vResult = _mm_mul_ps(RefractionIndex, Incident);
+        R = _mm_mul_ps(R,Normal);
+        vResult = _mm_sub_ps(vResult,R);
+    }
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4Orthogonal
+(
+    FXMVECTOR V
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR Result;
+    Result.vector4_f32[0] = V.vector4_f32[2];
+    Result.vector4_f32[1] = V.vector4_f32[3];
+    Result.vector4_f32[2] = -V.vector4_f32[0];
+    Result.vector4_f32[3] = -V.vector4_f32[1];
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    static const XMVECTORF32 FlipZW = {1.0f,1.0f,-1.0f,-1.0f};
+    XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,0,3,2));
+    vResult = _mm_mul_ps(vResult,FlipZW);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4AngleBetweenNormalsEst
+(
+    FXMVECTOR N1, 
+    FXMVECTOR N2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR NegativeOne;
+    XMVECTOR One;
+    XMVECTOR Result;
+
+    Result = XMVector4Dot(N1, N2);
+    NegativeOne = XMVectorSplatConstant(-1, 0);
+    One = XMVectorSplatOne();
+    Result = XMVectorClamp(Result, NegativeOne, One);
+    Result = XMVectorACosEst(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = XMVector4Dot(N1,N2);
+    // Clamp to -1.0f to 1.0f
+    vResult = _mm_max_ps(vResult,g_XMNegativeOne);
+    vResult = _mm_min_ps(vResult,g_XMOne);;
+    vResult = XMVectorACosEst(vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4AngleBetweenNormals
+(
+    FXMVECTOR N1, 
+    FXMVECTOR N2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR NegativeOne;
+    XMVECTOR One;
+    XMVECTOR Result;
+
+    Result = XMVector4Dot(N1, N2);
+    NegativeOne = XMVectorSplatConstant(-1, 0);
+    One = XMVectorSplatOne();
+    Result = XMVectorClamp(Result, NegativeOne, One);
+    Result = XMVectorACos(Result);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR vResult = XMVector4Dot(N1,N2);
+    // Clamp to -1.0f to 1.0f
+    vResult = _mm_max_ps(vResult,g_XMNegativeOne);
+    vResult = _mm_min_ps(vResult,g_XMOne);;
+    vResult = XMVectorACos(vResult);
+    return vResult;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4AngleBetweenVectors
+(
+    FXMVECTOR V1, 
+    FXMVECTOR V2
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR L1;
+    XMVECTOR L2;
+    XMVECTOR Dot;
+    XMVECTOR CosAngle;
+    XMVECTOR NegativeOne;
+    XMVECTOR One;
+    XMVECTOR Result;
+
+    L1 = XMVector4ReciprocalLength(V1);
+    L2 = XMVector4ReciprocalLength(V2);
+
+    Dot = XMVector4Dot(V1, V2);
+
+    L1 = XMVectorMultiply(L1, L2);
+
+    CosAngle = XMVectorMultiply(Dot, L1);
+    NegativeOne = XMVectorSplatConstant(-1, 0);
+    One = XMVectorSplatOne();
+    CosAngle = XMVectorClamp(CosAngle, NegativeOne, One);
+
+    Result = XMVectorACos(CosAngle);
+
+    return Result;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    XMVECTOR L1;
+    XMVECTOR L2;
+    XMVECTOR Dot;
+    XMVECTOR CosAngle;
+    XMVECTOR Result;
+
+    L1 = XMVector4ReciprocalLength(V1);
+    L2 = XMVector4ReciprocalLength(V2);
+    Dot = XMVector4Dot(V1, V2);
+    L1 = _mm_mul_ps(L1,L2);
+    CosAngle = _mm_mul_ps(Dot,L1);
+    CosAngle = XMVectorClamp(CosAngle, g_XMNegativeOne, g_XMOne);
+    Result = XMVectorACos(CosAngle);
+    return Result;
+
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR XMVector4Transform
+(
+    FXMVECTOR V, 
+    CXMMATRIX M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+    FLOAT fX = (M.m[0][0]*V.vector4_f32[0])+(M.m[1][0]*V.vector4_f32[1])+(M.m[2][0]*V.vector4_f32[2])+(M.m[3][0]*V.vector4_f32[3]);
+    FLOAT fY = (M.m[0][1]*V.vector4_f32[0])+(M.m[1][1]*V.vector4_f32[1])+(M.m[2][1]*V.vector4_f32[2])+(M.m[3][1]*V.vector4_f32[3]);
+    FLOAT fZ = (M.m[0][2]*V.vector4_f32[0])+(M.m[1][2]*V.vector4_f32[1])+(M.m[2][2]*V.vector4_f32[2])+(M.m[3][2]*V.vector4_f32[3]);
+    FLOAT fW = (M.m[0][3]*V.vector4_f32[0])+(M.m[1][3]*V.vector4_f32[1])+(M.m[2][3]*V.vector4_f32[2])+(M.m[3][3]*V.vector4_f32[3]);
+    XMVECTOR vResult = {
+        fX,
+        fY,
+        fZ,
+        fW
+    };
+    return vResult;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    // Splat x,y,z and w
+    XMVECTOR vTempX = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
+    XMVECTOR vTempY = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
+    XMVECTOR vTempZ = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
+    XMVECTOR vTempW = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,3,3,3));
+    // Mul by the matrix
+    vTempX = _mm_mul_ps(vTempX,M.r[0]);
+    vTempY = _mm_mul_ps(vTempY,M.r[1]);
+    vTempZ = _mm_mul_ps(vTempZ,M.r[2]);
+    vTempW = _mm_mul_ps(vTempW,M.r[3]);
+    // Add them all together
+    vTempX = _mm_add_ps(vTempX,vTempY);
+    vTempZ = _mm_add_ps(vTempZ,vTempW);
+    vTempX = _mm_add_ps(vTempX,vTempZ);
+    return vTempX;
+#else // _XM_VMX128_INTRINSICS_
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+//------------------------------------------------------------------------------
+
+XMINLINE XMFLOAT4* XMVector4TransformStream
+(
+    XMFLOAT4*       pOutputStream, 
+    size_t          OutputStride, 
+    CONST XMFLOAT4* pInputStream, 
+    size_t          InputStride, 
+    size_t          VectorCount, 
+    CXMMATRIX     M
+)
+{
+#if defined(_XM_NO_INTRINSICS_)
+
+    XMVECTOR V;
+    XMVECTOR X;
+    XMVECTOR Y;
+    XMVECTOR Z;
+    XMVECTOR W;
+    XMVECTOR Result;
+    size_t   i;
+    CONST BYTE* pInputVector = (CONST BYTE*)pInputStream;
+    BYTE*    pOutputVector = (BYTE*)pOutputStream;
+
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    for (i = 0; i < VectorCount; i++)
+    {
+        V = XMLoadFloat4((const XMFLOAT4*)pInputVector);
+        W = XMVectorSplatW(V);
+        Z = XMVectorSplatZ(V);
+        Y = XMVectorSplatY(V);
+        X = XMVectorSplatX(V);
+//        W = XMVectorReplicate(((XMFLOAT4*)pInputVector)->w);
+//        Z = XMVectorReplicate(((XMFLOAT4*)pInputVector)->z);
+//        Y = XMVectorReplicate(((XMFLOAT4*)pInputVector)->y);
+//        X = XMVectorReplicate(((XMFLOAT4*)pInputVector)->x);
+
+        Result = XMVectorMultiply(W, M.r[3]);
+        Result = XMVectorMultiplyAdd(Z, M.r[2], Result);
+        Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
+        Result = XMVectorMultiplyAdd(X, M.r[0], Result);
+
+        XMStoreFloat4((XMFLOAT4*)pOutputVector, Result);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+
+    return pOutputStream;
+
+#elif defined(_XM_SSE_INTRINSICS_)
+    size_t i;
+
+    XMASSERT(pOutputStream);
+    XMASSERT(pInputStream);
+
+    const BYTE*pInputVector = reinterpret_cast<const BYTE *>(pInputStream);
+    BYTE* pOutputVector = reinterpret_cast<BYTE *>(pOutputStream);
+    for (i = 0; i < VectorCount; i++)
+    {
+        // Fetch the row and splat it
+        XMVECTOR vTempx = _mm_loadu_ps(reinterpret_cast<const float *>(pInputVector));
+        XMVECTOR vTempy = _mm_shuffle_ps(vTempx,vTempx,_MM_SHUFFLE(1,1,1,1));
+        XMVECTOR vTempz = _mm_shuffle_ps(vTempx,vTempx,_MM_SHUFFLE(2,2,2,2));
+        XMVECTOR vTempw = _mm_shuffle_ps(vTempx,vTempx,_MM_SHUFFLE(3,3,3,3));
+        vTempx = _mm_shuffle_ps(vTempx,vTempx,_MM_SHUFFLE(0,0,0,0));
+        vTempx = _mm_mul_ps(vTempx,M.r[0]);
+        vTempy = _mm_mul_ps(vTempy,M.r[1]);
+        vTempz = _mm_mul_ps(vTempz,M.r[2]);
+        vTempw = _mm_mul_ps(vTempw,M.r[3]);
+        vTempx = _mm_add_ps(vTempx,vTempy);
+        vTempw = _mm_add_ps(vTempw,vTempz); 
+        vTempw = _mm_add_ps(vTempw,vTempx);
+        // Store the transformed vector
+        _mm_storeu_ps(reinterpret_cast<float *>(pOutputVector),vTempw);
+
+        pInputVector += InputStride; 
+        pOutputVector += OutputStride;
+    }
+    return pOutputStream;
+#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
+#endif // _XM_VMX128_INTRINSICS_
+}
+
+#ifdef __cplusplus
+
+/****************************************************************************
+ *
+ * XMVECTOR operators
+ *
+ ****************************************************************************/
+
+#ifndef XM_NO_OPERATOR_OVERLOADS
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR operator+ (FXMVECTOR V)
+{
+    return V;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR operator- (FXMVECTOR V)
+{
+    return XMVectorNegate(V);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR& operator+=
+(
+    XMVECTOR&       V1,
+    FXMVECTOR       V2
+)
+{
+    V1 = XMVectorAdd(V1, V2);
+    return V1;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR& operator-=
+(
+    XMVECTOR&       V1,
+    FXMVECTOR       V2
+)
+{
+    V1 = XMVectorSubtract(V1, V2);
+    return V1;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR& operator*=
+(
+    XMVECTOR&       V1,
+    FXMVECTOR       V2
+)
+{
+    V1 = XMVectorMultiply(V1, V2);
+    return V1;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR& operator/=
+(
+    XMVECTOR&       V1,
+    FXMVECTOR       V2
+)
+{
+    V1 = XMVectorDivide(V1,V2);
+    return V1;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR& operator*=
+(
+    XMVECTOR&   V,
+    CONST FLOAT S
+)
+{
+    V = XMVectorScale(V, S);
+    return V;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR& operator/=
+(
+    XMVECTOR&   V,
+    CONST FLOAT S
+)
+{
+    V = XMVectorScale(V, 1.0f / S);
+    return V;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR operator+
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+    return XMVectorAdd(V1, V2);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR operator-
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+    return XMVectorSubtract(V1, V2);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR operator*
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+    return XMVectorMultiply(V1, V2);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR operator/
+(
+    FXMVECTOR V1,
+    FXMVECTOR V2
+)
+{
+    return XMVectorDivide(V1,V2);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR operator*
+(
+    FXMVECTOR      V,
+    CONST FLOAT    S
+)
+{
+    return XMVectorScale(V, S);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR operator/
+(
+    FXMVECTOR      V,
+    CONST FLOAT    S
+)
+{
+    return XMVectorScale(V, 1.0f / S);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMVECTOR operator*
+(
+    FLOAT           S,
+    FXMVECTOR              V
+)
+{
+    return XMVectorScale(V, S);
+}
+
+#endif // !XM_NO_OPERATOR_OVERLOADS
+
+/****************************************************************************
+ *
+ * XMFLOAT2 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMFLOAT2::_XMFLOAT2
+(
+    CONST FLOAT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMFLOAT2& _XMFLOAT2::operator=
+(
+    CONST _XMFLOAT2& Float2
+)
+{
+    x = Float2.x;
+    y = Float2.y;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMFLOAT2A& XMFLOAT2A::operator=
+(
+    CONST XMFLOAT2A& Float2
+)
+{
+    x = Float2.x;
+    y = Float2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMINT2 operators
+ *
+ ****************************************************************************/
+
+XMFINLINE _XMINT2::_XMINT2
+(
+    CONST INT *pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMINT2& _XMINT2::operator=
+(
+    CONST _XMINT2& Int2
+)
+{
+    x = Int2.x;
+    y = Int2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUINT2 operators
+ *
+ ****************************************************************************/
+
+XMFINLINE _XMUINT2::_XMUINT2
+(
+    CONST UINT *pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMUINT2& _XMUINT2::operator=
+(
+    CONST _XMUINT2& UInt2
+)
+{
+    x = UInt2.x;
+    y = UInt2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMHALF2 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHALF2::_XMHALF2
+(
+    CONST HALF* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHALF2::_XMHALF2
+(
+    FLOAT _x,
+    FLOAT _y
+)
+{
+    x = XMConvertFloatToHalf(_x);
+    y = XMConvertFloatToHalf(_y);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHALF2::_XMHALF2
+(
+    CONST FLOAT* pArray
+)
+{
+    x = XMConvertFloatToHalf(pArray[0]);
+    y = XMConvertFloatToHalf(pArray[1]);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHALF2& _XMHALF2::operator=
+(
+    CONST _XMHALF2& Half2
+)
+{
+    x = Half2.x;
+    y = Half2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMSHORTN2 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORTN2::_XMSHORTN2
+(
+    CONST SHORT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORTN2::_XMSHORTN2
+(
+    FLOAT _x,
+    FLOAT _y
+)
+{
+    XMStoreShortN2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORTN2::_XMSHORTN2
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreShortN2(this, XMLoadFloat2((const XMFLOAT2*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORTN2& _XMSHORTN2::operator=
+(
+    CONST _XMSHORTN2& ShortN2
+)
+{
+    x = ShortN2.x;
+    y = ShortN2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMSHORT2 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORT2::_XMSHORT2
+(
+    CONST SHORT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORT2::_XMSHORT2
+(
+    FLOAT _x,
+    FLOAT _y
+)
+{
+    XMStoreShort2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORT2::_XMSHORT2
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreShort2(this, XMLoadFloat2((const XMFLOAT2*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORT2& _XMSHORT2::operator=
+(
+    CONST _XMSHORT2& Short2
+)
+{
+    x = Short2.x;
+    y = Short2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUSHORTN2 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORTN2::_XMUSHORTN2
+(
+    CONST USHORT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORTN2::_XMUSHORTN2
+(
+    FLOAT _x,
+    FLOAT _y
+)
+{
+    XMStoreUShortN2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORTN2::_XMUSHORTN2
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUShortN2(this, XMLoadFloat2((const XMFLOAT2*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORTN2& _XMUSHORTN2::operator=
+(
+    CONST _XMUSHORTN2& UShortN2
+)
+{
+    x = UShortN2.x;
+    y = UShortN2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUSHORT2 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORT2::_XMUSHORT2
+(
+    CONST USHORT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORT2::_XMUSHORT2
+(
+    FLOAT _x,
+    FLOAT _y
+)
+{
+    XMStoreUShort2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORT2::_XMUSHORT2
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUShort2(this, XMLoadFloat2((const XMFLOAT2*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORT2& _XMUSHORT2::operator=
+(
+    CONST _XMUSHORT2& UShort2
+)
+{
+    x = UShort2.x;
+    y = UShort2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMBYTEN2 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTEN2::_XMBYTEN2
+(
+    CONST CHAR* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTEN2::_XMBYTEN2
+(
+    FLOAT _x,
+    FLOAT _y
+)
+{
+    XMStoreByteN2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTEN2::_XMBYTEN2
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreByteN2(this, XMLoadFloat2((const XMFLOAT2*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTEN2& _XMBYTEN2::operator=
+(
+    CONST _XMBYTEN2& ByteN2
+)
+{
+    x = ByteN2.x;
+    y = ByteN2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMBYTE2 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTE2::_XMBYTE2
+(
+    CONST CHAR* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTE2::_XMBYTE2
+(
+    FLOAT _x,
+    FLOAT _y
+)
+{
+    XMStoreByte2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTE2::_XMBYTE2
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreByte2(this, XMLoadFloat2((const XMFLOAT2*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTE2& _XMBYTE2::operator=
+(
+    CONST _XMBYTE2& Byte2
+)
+{
+    x = Byte2.x;
+    y = Byte2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUBYTEN2 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTEN2::_XMUBYTEN2
+(
+    CONST BYTE* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTEN2::_XMUBYTEN2
+(
+    FLOAT _x,
+    FLOAT _y
+)
+{
+    XMStoreUByteN2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTEN2::_XMUBYTEN2
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUByteN2(this, XMLoadFloat2((const XMFLOAT2*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTEN2& _XMUBYTEN2::operator=
+(
+    CONST _XMUBYTEN2& UByteN2
+)
+{
+    x = UByteN2.x;
+    y = UByteN2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUBYTE2 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTE2::_XMUBYTE2
+(
+    CONST BYTE* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTE2::_XMUBYTE2
+(
+    FLOAT _x,
+    FLOAT _y
+)
+{
+    XMStoreUByte2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTE2::_XMUBYTE2
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUByte2(this, XMLoadFloat2((const XMFLOAT2*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTE2& _XMUBYTE2::operator=
+(
+    CONST _XMUBYTE2& UByte2
+)
+{
+    x = UByte2.x;
+    y = UByte2.y;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMFLOAT3 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMFLOAT3::_XMFLOAT3
+(
+    CONST FLOAT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMFLOAT3& _XMFLOAT3::operator=
+(
+    CONST _XMFLOAT3& Float3
+)
+{
+    x = Float3.x;
+    y = Float3.y;
+    z = Float3.z;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMFLOAT3A& XMFLOAT3A::operator=
+(
+    CONST XMFLOAT3A& Float3
+)
+{
+    x = Float3.x;
+    y = Float3.y;
+    z = Float3.z;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMINT3 operators
+ *
+ ****************************************************************************/
+
+XMFINLINE _XMINT3::_XMINT3
+(
+    CONST INT *pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMINT3& _XMINT3::operator=
+(
+    CONST _XMINT3& Int3
+)
+{
+    x = Int3.x;
+    y = Int3.y;
+    z = Int3.z;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUINT3 operators
+ *
+ ****************************************************************************/
+
+XMFINLINE _XMUINT3::_XMUINT3
+(
+    CONST UINT *pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMUINT3& _XMUINT3::operator=
+(
+    CONST _XMUINT3& UInt3
+)
+{
+    x = UInt3.x;
+    y = UInt3.y;
+    z = UInt3.z;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMHENDN3 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHENDN3::_XMHENDN3
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreHenDN3(this, XMVectorSet(_x, _y, _z, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHENDN3::_XMHENDN3
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreHenDN3(this, XMLoadFloat3((const XMFLOAT3*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHENDN3& _XMHENDN3::operator=
+(
+    CONST _XMHENDN3& HenDN3
+)
+{
+    v = HenDN3.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHENDN3& _XMHENDN3::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMHEND3 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHEND3::_XMHEND3
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreHenD3(this, XMVectorSet(_x, _y, _z, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHEND3::_XMHEND3
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreHenD3(this, XMLoadFloat3((const XMFLOAT3*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHEND3& _XMHEND3::operator=
+(
+    CONST _XMHEND3& HenD3
+)
+{
+    v = HenD3.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHEND3& _XMHEND3::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUHENDN3 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUHENDN3::_XMUHENDN3
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreUHenDN3(this, XMVectorSet(_x, _y, _z, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUHENDN3::_XMUHENDN3
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUHenDN3(this, XMLoadFloat3((const XMFLOAT3*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUHENDN3& _XMUHENDN3::operator=
+(
+    CONST _XMUHENDN3& UHenDN3
+)
+{
+    v = UHenDN3.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUHENDN3& _XMUHENDN3::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUHEND3 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUHEND3::_XMUHEND3
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreUHenD3(this, XMVectorSet(_x, _y, _z, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUHEND3::_XMUHEND3
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUHenD3(this, XMLoadFloat3((const XMFLOAT3*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUHEND3& _XMUHEND3::operator=
+(
+    CONST _XMUHEND3& UHenD3
+)
+{
+    v = UHenD3.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUHEND3& _XMUHEND3::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMDHENN3 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDHENN3::_XMDHENN3
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreDHenN3(this, XMVectorSet(_x, _y, _z, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDHENN3::_XMDHENN3
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreDHenN3(this, XMLoadFloat3((const XMFLOAT3*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDHENN3& _XMDHENN3::operator=
+(
+    CONST _XMDHENN3& DHenN3
+)
+{
+    v = DHenN3.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDHENN3& _XMDHENN3::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMDHEN3 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDHEN3::_XMDHEN3
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreDHen3(this, XMVectorSet(_x, _y, _z, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDHEN3::_XMDHEN3
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreDHen3(this, XMLoadFloat3((const XMFLOAT3*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDHEN3& _XMDHEN3::operator=
+(
+    CONST _XMDHEN3& DHen3
+)
+{
+    v = DHen3.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDHEN3& _XMDHEN3::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUDHENN3 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDHENN3::_XMUDHENN3
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreUDHenN3(this, XMVectorSet(_x, _y, _z, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDHENN3::_XMUDHENN3
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUDHenN3(this, XMLoadFloat3((const XMFLOAT3*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDHENN3& _XMUDHENN3::operator=
+(
+    CONST _XMUDHENN3& UDHenN3
+)
+{
+    v = UDHenN3.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDHENN3& _XMUDHENN3::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUDHEN3 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDHEN3::_XMUDHEN3
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreUDHen3(this, XMVectorSet(_x, _y, _z, 0.0f));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDHEN3::_XMUDHEN3
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUDHen3(this, XMLoadFloat3((const XMFLOAT3*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDHEN3& _XMUDHEN3::operator=
+(
+    CONST _XMUDHEN3& UDHen3
+)
+{
+    v = UDHen3.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDHEN3& _XMUDHEN3::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMU565 operators
+ *
+ ****************************************************************************/
+
+XMFINLINE _XMU565::_XMU565
+(
+    CONST CHAR *pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+}
+
+XMFINLINE _XMU565::_XMU565
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreU565(this, XMVectorSet( _x, _y, _z, 0.0f ));
+}
+
+XMFINLINE _XMU565::_XMU565
+(
+    CONST FLOAT *pArray
+)
+{
+    XMStoreU565(this, XMLoadFloat3((const XMFLOAT3*)pArray ));
+}
+
+XMFINLINE _XMU565& _XMU565::operator=
+(
+    CONST _XMU565& U565
+)
+{
+    v = U565.v;
+    return *this;
+}
+
+XMFINLINE _XMU565& _XMU565::operator=
+(
+    CONST USHORT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMFLOAT3PK operators
+ *
+ ****************************************************************************/
+
+XMFINLINE _XMFLOAT3PK::_XMFLOAT3PK
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreFloat3PK(this, XMVectorSet( _x, _y, _z, 0.0f ));
+}
+
+XMFINLINE _XMFLOAT3PK::_XMFLOAT3PK
+(
+    CONST FLOAT *pArray
+)
+{
+    XMStoreFloat3PK(this, XMLoadFloat3((const XMFLOAT3*)pArray ));
+}
+
+XMFINLINE _XMFLOAT3PK& _XMFLOAT3PK::operator=
+(
+    CONST _XMFLOAT3PK& float3pk
+)
+{
+    v = float3pk.v;
+    return *this;
+}
+
+XMFINLINE _XMFLOAT3PK& _XMFLOAT3PK::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMFLOAT3SE operators
+ *
+ ****************************************************************************/
+
+XMFINLINE _XMFLOAT3SE::_XMFLOAT3SE
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z
+)
+{
+    XMStoreFloat3SE(this, XMVectorSet( _x, _y, _z, 0.0f ));
+}
+
+XMFINLINE _XMFLOAT3SE::_XMFLOAT3SE
+(
+    CONST FLOAT *pArray
+)
+{
+    XMStoreFloat3SE(this, XMLoadFloat3((const XMFLOAT3*)pArray ));
+}
+
+XMFINLINE _XMFLOAT3SE& _XMFLOAT3SE::operator=
+(
+    CONST _XMFLOAT3SE& float3se
+)
+{
+    v = float3se.v;
+    return *this;
+}
+
+XMFINLINE _XMFLOAT3SE& _XMFLOAT3SE::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMFLOAT4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMFLOAT4::_XMFLOAT4
+(
+    CONST FLOAT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMFLOAT4& _XMFLOAT4::operator=
+(
+    CONST _XMFLOAT4& Float4
+)
+{
+    x = Float4.x;
+    y = Float4.y;
+    z = Float4.z;
+    w = Float4.w;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMFLOAT4A& XMFLOAT4A::operator=
+(
+    CONST XMFLOAT4A& Float4
+)
+{
+    x = Float4.x;
+    y = Float4.y;
+    z = Float4.z;
+    w = Float4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMINT4 operators
+ *
+ ****************************************************************************/
+
+XMFINLINE _XMINT4::_XMINT4
+(
+    CONST INT *pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMINT4& _XMINT4::operator=
+(
+    CONST _XMINT4& Int4
+)
+{
+    x = Int4.x;
+    y = Int4.y;
+    z = Int4.z;
+    w = Int4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUINT4 operators
+ *
+ ****************************************************************************/
+
+XMFINLINE _XMUINT4::_XMUINT4
+(
+    CONST UINT *pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE XMUINT4& _XMUINT4::operator=
+(
+    CONST _XMUINT4& UInt4
+)
+{
+    x = UInt4.x;
+    y = UInt4.y;
+    z = UInt4.z;
+    w = UInt4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMHALF4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHALF4::_XMHALF4
+(
+    CONST HALF* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHALF4::_XMHALF4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    x = XMConvertFloatToHalf(_x);
+    y = XMConvertFloatToHalf(_y);
+    z = XMConvertFloatToHalf(_z);
+    w = XMConvertFloatToHalf(_w);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHALF4::_XMHALF4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMConvertFloatToHalfStream(&x, sizeof(HALF), pArray, sizeof(FLOAT), 4);
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMHALF4& _XMHALF4::operator=
+(
+    CONST _XMHALF4& Half4
+)
+{
+    x = Half4.x;
+    y = Half4.y;
+    z = Half4.z;
+    w = Half4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMSHORTN4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORTN4::_XMSHORTN4
+(
+    CONST SHORT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORTN4::_XMSHORTN4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreShortN4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORTN4::_XMSHORTN4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreShortN4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORTN4& _XMSHORTN4::operator=
+(
+    CONST _XMSHORTN4& ShortN4
+)
+{
+    x = ShortN4.x;
+    y = ShortN4.y;
+    z = ShortN4.z;
+    w = ShortN4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMSHORT4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORT4::_XMSHORT4
+(
+    CONST SHORT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORT4::_XMSHORT4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreShort4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORT4::_XMSHORT4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreShort4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMSHORT4& _XMSHORT4::operator=
+(
+    CONST _XMSHORT4& Short4
+)
+{
+    x = Short4.x;
+    y = Short4.y;
+    z = Short4.z;
+    w = Short4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUSHORTN4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORTN4::_XMUSHORTN4
+(
+    CONST USHORT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORTN4::_XMUSHORTN4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreUShortN4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORTN4::_XMUSHORTN4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUShortN4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORTN4& _XMUSHORTN4::operator=
+(
+    CONST _XMUSHORTN4& UShortN4
+)
+{
+    x = UShortN4.x;
+    y = UShortN4.y;
+    z = UShortN4.z;
+    w = UShortN4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUSHORT4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORT4::_XMUSHORT4
+(
+    CONST USHORT* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORT4::_XMUSHORT4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreUShort4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORT4::_XMUSHORT4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUShort4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUSHORT4& _XMUSHORT4::operator=
+(
+    CONST _XMUSHORT4& UShort4
+)
+{
+    x = UShort4.x;
+    y = UShort4.y;
+    z = UShort4.z;
+    w = UShort4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMXDECN4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXDECN4::_XMXDECN4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreXDecN4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXDECN4::_XMXDECN4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreXDecN4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXDECN4& _XMXDECN4::operator=
+(
+    CONST _XMXDECN4& XDecN4
+)
+{
+    v = XDecN4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXDECN4& _XMXDECN4::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMXDEC4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXDEC4::_XMXDEC4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreXDec4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXDEC4::_XMXDEC4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreXDec4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXDEC4& _XMXDEC4::operator=
+(
+    CONST _XMXDEC4& XDec4
+)
+{
+    v = XDec4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXDEC4& _XMXDEC4::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMDECN4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDECN4::_XMDECN4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreDecN4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDECN4::_XMDECN4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreDecN4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDECN4& _XMDECN4::operator=
+(
+    CONST _XMDECN4& DecN4
+)
+{
+    v = DecN4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDECN4& _XMDECN4::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMDEC4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDEC4::_XMDEC4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreDec4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDEC4::_XMDEC4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreDec4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDEC4& _XMDEC4::operator=
+(
+    CONST _XMDEC4& Dec4
+)
+{
+    v = Dec4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMDEC4& _XMDEC4::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUDECN4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDECN4::_XMUDECN4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreUDecN4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDECN4::_XMUDECN4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUDecN4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDECN4& _XMUDECN4::operator=
+(
+    CONST _XMUDECN4& UDecN4
+)
+{
+    v = UDecN4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDECN4& _XMUDECN4::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUDEC4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDEC4::_XMUDEC4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreUDec4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDEC4::_XMUDEC4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUDec4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDEC4& _XMUDEC4::operator=
+(
+    CONST _XMUDEC4& UDec4
+)
+{
+    v = UDec4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUDEC4& _XMUDEC4::operator=
+(
+    CONST UINT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMXICON4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXICON4::_XMXICON4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreXIcoN4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXICON4::_XMXICON4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreXIcoN4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXICON4& _XMXICON4::operator=
+(
+    CONST _XMXICON4& XIcoN4
+)
+{
+    v = XIcoN4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXICON4& _XMXICON4::operator=
+(
+    CONST UINT64 Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMXICO4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXICO4::_XMXICO4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreXIco4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXICO4::_XMXICO4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreXIco4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXICO4& _XMXICO4::operator=
+(
+    CONST _XMXICO4& XIco4
+)
+{
+    v = XIco4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMXICO4& _XMXICO4::operator=
+(
+    CONST UINT64 Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMICON4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMICON4::_XMICON4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreIcoN4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMICON4::_XMICON4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreIcoN4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMICON4& _XMICON4::operator=
+(
+    CONST _XMICON4& IcoN4
+)
+{
+    v = IcoN4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMICON4& _XMICON4::operator=
+(
+    CONST UINT64 Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMICO4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMICO4::_XMICO4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreIco4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMICO4::_XMICO4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreIco4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMICO4& _XMICO4::operator=
+(
+    CONST _XMICO4& Ico4
+)
+{
+    v = Ico4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMICO4& _XMICO4::operator=
+(
+    CONST UINT64 Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUICON4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUICON4::_XMUICON4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreUIcoN4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUICON4::_XMUICON4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUIcoN4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUICON4& _XMUICON4::operator=
+(
+    CONST _XMUICON4& UIcoN4
+)
+{
+    v = UIcoN4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUICON4& _XMUICON4::operator=
+(
+    CONST UINT64 Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUICO4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUICO4::_XMUICO4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreUIco4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUICO4::_XMUICO4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUIco4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUICO4& _XMUICO4::operator=
+(
+    CONST _XMUICO4& UIco4
+)
+{
+    v = UIco4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUICO4& _XMUICO4::operator=
+(
+    CONST UINT64 Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMCOLOR4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMCOLOR::_XMCOLOR
+(
+    FLOAT _r,
+    FLOAT _g,
+    FLOAT _b,
+    FLOAT _a
+)
+{
+    XMStoreColor(this, XMVectorSet(_r, _g, _b, _a));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMCOLOR::_XMCOLOR
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreColor(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMCOLOR& _XMCOLOR::operator=
+(
+    CONST _XMCOLOR& Color
+)
+{
+    c = Color.c;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMCOLOR& _XMCOLOR::operator=
+(
+    CONST UINT Color
+)
+{
+    c = Color;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMBYTEN4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTEN4::_XMBYTEN4
+(
+    CONST CHAR* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTEN4::_XMBYTEN4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreByteN4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTEN4::_XMBYTEN4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreByteN4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTEN4& _XMBYTEN4::operator=
+(
+    CONST _XMBYTEN4& ByteN4
+)
+{
+    x = ByteN4.x;
+    y = ByteN4.y;
+    z = ByteN4.z;
+    w = ByteN4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMBYTE4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTE4::_XMBYTE4
+(
+    CONST CHAR* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTE4::_XMBYTE4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreByte4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTE4::_XMBYTE4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreByte4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMBYTE4& _XMBYTE4::operator=
+(
+    CONST _XMBYTE4& Byte4
+)
+{
+    x = Byte4.x;
+    y = Byte4.y;
+    z = Byte4.z;
+    w = Byte4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUBYTEN4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTEN4::_XMUBYTEN4
+(
+    CONST BYTE* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTEN4::_XMUBYTEN4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreUByteN4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTEN4::_XMUBYTEN4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUByteN4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTEN4& _XMUBYTEN4::operator=
+(
+    CONST _XMUBYTEN4& UByteN4
+)
+{
+    x = UByteN4.x;
+    y = UByteN4.y;
+    z = UByteN4.z;
+    w = UByteN4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUBYTE4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTE4::_XMUBYTE4
+(
+    CONST BYTE* pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTE4::_XMUBYTE4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreUByte4(this, XMVectorSet(_x, _y, _z, _w));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTE4::_XMUBYTE4
+(
+    CONST FLOAT* pArray
+)
+{
+    XMStoreUByte4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUBYTE4& _XMUBYTE4::operator=
+(
+    CONST _XMUBYTE4& UByte4
+)
+{
+    x = UByte4.x;
+    y = UByte4.y;
+    z = UByte4.z;
+    w = UByte4.w;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMUNIBBLE4 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUNIBBLE4::_XMUNIBBLE4
+(
+    CONST CHAR *pArray
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = pArray[3];
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUNIBBLE4::_XMUNIBBLE4
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    FLOAT _w
+)
+{
+    XMStoreUNibble4(this, XMVectorSet( _x, _y, _z, _w ));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUNIBBLE4::_XMUNIBBLE4
+(
+    CONST FLOAT *pArray
+)
+{
+    XMStoreUNibble4(this, XMLoadFloat4((const XMFLOAT4*)pArray));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUNIBBLE4& _XMUNIBBLE4::operator=
+(
+    CONST _XMUNIBBLE4& UNibble4
+)
+{
+    v = UNibble4.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMUNIBBLE4& _XMUNIBBLE4::operator=
+(
+    CONST USHORT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+/****************************************************************************
+ *
+ * XMU555 operators
+ *
+ ****************************************************************************/
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMU555::_XMU555
+(
+    CONST CHAR *pArray,
+    BOOL _w
+)
+{
+    x = pArray[0];
+    y = pArray[1];
+    z = pArray[2];
+    w = _w;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMU555::_XMU555
+(
+    FLOAT _x,
+    FLOAT _y,
+    FLOAT _z,
+    BOOL _w
+)
+{
+    XMStoreU555(this, XMVectorSet(_x, _y, _z, ((_w) ? 1.0f : 0.0f) ));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMU555::_XMU555
+(
+    CONST FLOAT *pArray,
+    BOOL _w
+)
+{
+    XMVECTOR V = XMLoadFloat3((const XMFLOAT3*)pArray);
+    XMStoreU555(this, XMVectorSetW(V, ((_w) ? 1.0f : 0.0f) ));
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMU555& _XMU555::operator=
+(
+    CONST _XMU555& U555
+)
+{
+    v = U555.v;
+    return *this;
+}
+
+//------------------------------------------------------------------------------
+
+XMFINLINE _XMU555& _XMU555::operator=
+(
+    CONST USHORT Packed
+)
+{
+    v = Packed;
+    return *this;
+}
+
+#endif // __cplusplus
+
+#if defined(_XM_NO_INTRINSICS_)
+#undef XMISNAN
+#undef XMISINF
+#endif
+
+#endif // __XNAMATHVECTOR_INL__
+